Matches in SemOpenAlex for { <https://semopenalex.org/work/W2730843485> ?p ?o ?g. }
- W2730843485 endingPage "696" @default.
- W2730843485 startingPage "696" @default.
- W2730843485 abstract "High spatial resolution hyperspectral data often used in precision farming applications are not available from current satellite sensors, and difficult or expensive to acquire from standard aircraft. Alternatively, in precision farming, unmanned aerial vehicles (UAVs) are emerging as lower cost and more flexible means to acquire very high resolution imagery. Miniaturized hyperspectral sensors have been developed for UAVs, but the sensors, associated hardware, and data processing software are still cost prohibitive for use by individual farmers or small remote sensing firms. This study simulated hyperspectral image data by fusing multispectral camera imagery and spectrometer data. We mounted a multispectral camera and spectrometer, both being low cost and low weight, on a standard UAV and developed procedures for their precise data alignment, followed by fusion of the spectrometer data with the image data to produce estimated spectra for all the multispectral camera image pixels. To align the data collected from the two sensors in both the time and space domains, a post-acquisition correlation-based global optimization method was used. Data fusion, to estimate hyperspectral reflectance, was implemented using several methods for comparison. Flight data from two crop sites, one being tomatoes, and the other corn and soybeans, were used to evaluate the alignment procedure and the data fusion results. The data alignment procedure resulted in a peak R2 between the spectrometer and camera data of 0.95 and 0.72, respectively, for the two test sites. The corresponding multispectral camera data for these space and time offsets were taken as the best match to a given spectrometer reading, and used in modelling to estimate hyperspectral imagery from the multispectral camera pixel data. Of the fusion approaches evaluated, principal component analysis (PCA) based models and Bayesian imputation reached a similar accuracy, and outperformed simple spline interpolation. Mean absolute error (MAE) between predicted and observed spectra was 17% relative to the mean of the observed spectra, and root mean squared error (RMSE) was 0.028. This approach to deriving estimated hyperspectral image data can be applied in a simple fashion at very low cost for crop assessment and monitoring within individual fields." @default.
- W2730843485 created "2017-07-14" @default.
- W2730843485 creator A5004185970 @default.
- W2730843485 creator A5028946411 @default.
- W2730843485 creator A5037584944 @default.
- W2730843485 creator A5074799534 @default.
- W2730843485 date "2017-07-06" @default.
- W2730843485 modified "2023-10-03" @default.
- W2730843485 title "Fusion of Multispectral Imagery and Spectrometer Data in UAV Remote Sensing" @default.
- W2730843485 cites W1442930683 @default.
- W2730843485 cites W1742711665 @default.
- W2730843485 cites W1981099199 @default.
- W2730843485 cites W1981284533 @default.
- W2730843485 cites W1995248381 @default.
- W2730843485 cites W2023713278 @default.
- W2730843485 cites W2030233869 @default.
- W2730843485 cites W2039409148 @default.
- W2730843485 cites W2050321887 @default.
- W2730843485 cites W2052452467 @default.
- W2730843485 cites W2069209512 @default.
- W2730843485 cites W2072367388 @default.
- W2730843485 cites W2076700149 @default.
- W2730843485 cites W2080468243 @default.
- W2730843485 cites W2084546104 @default.
- W2730843485 cites W2097259623 @default.
- W2730843485 cites W2118178527 @default.
- W2730843485 cites W2134852861 @default.
- W2730843485 cites W2145187524 @default.
- W2730843485 cites W2147341427 @default.
- W2730843485 cites W2166326933 @default.
- W2730843485 cites W2195651936 @default.
- W2730843485 cites W2251608823 @default.
- W2730843485 cites W2303577120 @default.
- W2730843485 cites W2314684259 @default.
- W2730843485 cites W2315258102 @default.
- W2730843485 cites W2625894731 @default.
- W2730843485 cites W2698520966 @default.
- W2730843485 cites W889307476 @default.
- W2730843485 doi "https://doi.org/10.3390/rs9070696" @default.
- W2730843485 hasPublicationYear "2017" @default.
- W2730843485 type Work @default.
- W2730843485 sameAs 2730843485 @default.
- W2730843485 citedByCount "28" @default.
- W2730843485 countsByYear W27308434852017 @default.
- W2730843485 countsByYear W27308434852018 @default.
- W2730843485 countsByYear W27308434852019 @default.
- W2730843485 countsByYear W27308434852020 @default.
- W2730843485 countsByYear W27308434852021 @default.
- W2730843485 countsByYear W27308434852022 @default.
- W2730843485 countsByYear W27308434852023 @default.
- W2730843485 crossrefType "journal-article" @default.
- W2730843485 hasAuthorship W2730843485A5004185970 @default.
- W2730843485 hasAuthorship W2730843485A5028946411 @default.
- W2730843485 hasAuthorship W2730843485A5037584944 @default.
- W2730843485 hasAuthorship W2730843485A5074799534 @default.
- W2730843485 hasBestOaLocation W27308434851 @default.
- W2730843485 hasConcept C104541649 @default.
- W2730843485 hasConcept C115961682 @default.
- W2730843485 hasConcept C118518473 @default.
- W2730843485 hasConcept C120217122 @default.
- W2730843485 hasConcept C120665830 @default.
- W2730843485 hasConcept C121332964 @default.
- W2730843485 hasConcept C154945302 @default.
- W2730843485 hasConcept C159078339 @default.
- W2730843485 hasConcept C160633673 @default.
- W2730843485 hasConcept C166957645 @default.
- W2730843485 hasConcept C173163844 @default.
- W2730843485 hasConcept C183852935 @default.
- W2730843485 hasConcept C205372480 @default.
- W2730843485 hasConcept C205649164 @default.
- W2730843485 hasConcept C31972630 @default.
- W2730843485 hasConcept C33390570 @default.
- W2730843485 hasConcept C33954974 @default.
- W2730843485 hasConcept C41008148 @default.
- W2730843485 hasConcept C62649853 @default.
- W2730843485 hasConcept C69744172 @default.
- W2730843485 hasConceptScore W2730843485C104541649 @default.
- W2730843485 hasConceptScore W2730843485C115961682 @default.
- W2730843485 hasConceptScore W2730843485C118518473 @default.
- W2730843485 hasConceptScore W2730843485C120217122 @default.
- W2730843485 hasConceptScore W2730843485C120665830 @default.
- W2730843485 hasConceptScore W2730843485C121332964 @default.
- W2730843485 hasConceptScore W2730843485C154945302 @default.
- W2730843485 hasConceptScore W2730843485C159078339 @default.
- W2730843485 hasConceptScore W2730843485C160633673 @default.
- W2730843485 hasConceptScore W2730843485C166957645 @default.
- W2730843485 hasConceptScore W2730843485C173163844 @default.
- W2730843485 hasConceptScore W2730843485C183852935 @default.
- W2730843485 hasConceptScore W2730843485C205372480 @default.
- W2730843485 hasConceptScore W2730843485C205649164 @default.
- W2730843485 hasConceptScore W2730843485C31972630 @default.
- W2730843485 hasConceptScore W2730843485C33390570 @default.
- W2730843485 hasConceptScore W2730843485C33954974 @default.
- W2730843485 hasConceptScore W2730843485C41008148 @default.
- W2730843485 hasConceptScore W2730843485C62649853 @default.
- W2730843485 hasConceptScore W2730843485C69744172 @default.
- W2730843485 hasIssue "7" @default.
- W2730843485 hasLocation W27308434851 @default.