Matches in SemOpenAlex for { <https://semopenalex.org/work/W2732167411> ?p ?o ?g. }
- W2732167411 endingPage "201" @default.
- W2732167411 startingPage "189" @default.
- W2732167411 abstract "Abstract In many geometry processing applications, it is required to improve an initial mesh in terms of multiple quality objectives. Despite the availability of several mesh generation algorithms with provable guarantees, such generated meshes may only satisfy a subset of the objectives. The conflicting nature of such objectives makes it challenging to establish similar guarantees for each combination, e.g., angle bounds and vertex count. In this paper, we describe a versatile strategy for mesh improvement by interpreting quality objectives as spatial constraints on resampling and develop a toolbox of local operators to improve the mesh while preserving desirable properties. Our strategy judiciously combines smoothing and transformation techniques allowing increased flexibility to practically achieve multiple objectives simultaneously. We apply our strategy to both planar and surface meshes demonstrating how to simplify Delaunay meshes while preserving element quality, eliminate all obtuse angles in a complex mesh, and maximize the shortest edge length in a Voronoi tessellation far better than the state‐of‐the‐art." @default.
- W2732167411 created "2017-07-14" @default.
- W2732167411 creator A5022849805 @default.
- W2732167411 creator A5028662746 @default.
- W2732167411 creator A5049464195 @default.
- W2732167411 creator A5050840284 @default.
- W2732167411 creator A5055164286 @default.
- W2732167411 creator A5091341260 @default.
- W2732167411 date "2017-08-01" @default.
- W2732167411 modified "2023-10-06" @default.
- W2732167411 title "A Constrained Resampling Strategy for Mesh Improvement" @default.
- W2732167411 cites W109982125 @default.
- W2732167411 cites W1490688156 @default.
- W2732167411 cites W1798731418 @default.
- W2732167411 cites W1822776277 @default.
- W2732167411 cites W1969052304 @default.
- W2732167411 cites W1988200254 @default.
- W2732167411 cites W1990582887 @default.
- W2732167411 cites W1996376324 @default.
- W2732167411 cites W1999690352 @default.
- W2732167411 cites W2006502673 @default.
- W2732167411 cites W2021369132 @default.
- W2732167411 cites W2036378483 @default.
- W2732167411 cites W2039689486 @default.
- W2732167411 cites W2043896016 @default.
- W2732167411 cites W2047672528 @default.
- W2732167411 cites W2051752778 @default.
- W2732167411 cites W2054090557 @default.
- W2732167411 cites W2056205248 @default.
- W2732167411 cites W2057443286 @default.
- W2732167411 cites W2071731662 @default.
- W2732167411 cites W2075010828 @default.
- W2732167411 cites W2087027299 @default.
- W2732167411 cites W2100689536 @default.
- W2732167411 cites W2102765180 @default.
- W2732167411 cites W2112937077 @default.
- W2732167411 cites W2113741278 @default.
- W2732167411 cites W2129412583 @default.
- W2732167411 cites W2130814852 @default.
- W2732167411 cites W2135301926 @default.
- W2732167411 cites W2135397228 @default.
- W2732167411 cites W2135500318 @default.
- W2732167411 cites W2149647084 @default.
- W2732167411 cites W2151000529 @default.
- W2732167411 cites W2180038452 @default.
- W2732167411 cites W2235901111 @default.
- W2732167411 cites W2265566059 @default.
- W2732167411 cites W2493788773 @default.
- W2732167411 cites W2508364299 @default.
- W2732167411 cites W2510452213 @default.
- W2732167411 cites W2554087130 @default.
- W2732167411 cites W2561500936 @default.
- W2732167411 cites W2900946146 @default.
- W2732167411 cites W2913772345 @default.
- W2732167411 cites W3106306093 @default.
- W2732167411 cites W4238089689 @default.
- W2732167411 cites W4249570556 @default.
- W2732167411 doi "https://doi.org/10.1111/cgf.13256" @default.
- W2732167411 hasPublicationYear "2017" @default.
- W2732167411 type Work @default.
- W2732167411 sameAs 2732167411 @default.
- W2732167411 citedByCount "10" @default.
- W2732167411 countsByYear W27321674112018 @default.
- W2732167411 countsByYear W27321674112019 @default.
- W2732167411 countsByYear W27321674112020 @default.
- W2732167411 countsByYear W27321674112021 @default.
- W2732167411 countsByYear W27321674112022 @default.
- W2732167411 countsByYear W27321674112023 @default.
- W2732167411 crossrefType "journal-article" @default.
- W2732167411 hasAuthorship W2732167411A5022849805 @default.
- W2732167411 hasAuthorship W2732167411A5028662746 @default.
- W2732167411 hasAuthorship W2732167411A5049464195 @default.
- W2732167411 hasAuthorship W2732167411A5050840284 @default.
- W2732167411 hasAuthorship W2732167411A5055164286 @default.
- W2732167411 hasAuthorship W2732167411A5091341260 @default.
- W2732167411 hasBestOaLocation W27321674112 @default.
- W2732167411 hasConcept C104317684 @default.
- W2732167411 hasConcept C11413529 @default.
- W2732167411 hasConcept C121332964 @default.
- W2732167411 hasConcept C121684516 @default.
- W2732167411 hasConcept C126255220 @default.
- W2732167411 hasConcept C132525143 @default.
- W2732167411 hasConcept C135628077 @default.
- W2732167411 hasConcept C154945302 @default.
- W2732167411 hasConcept C160403270 @default.
- W2732167411 hasConcept C170589453 @default.
- W2732167411 hasConcept C181145010 @default.
- W2732167411 hasConcept C185592680 @default.
- W2732167411 hasConcept C204241405 @default.
- W2732167411 hasConcept C205711294 @default.
- W2732167411 hasConcept C24881265 @default.
- W2732167411 hasConcept C2524010 @default.
- W2732167411 hasConcept C31487907 @default.
- W2732167411 hasConcept C31972630 @default.
- W2732167411 hasConcept C33923547 @default.
- W2732167411 hasConcept C3770464 @default.
- W2732167411 hasConcept C41008148 @default.
- W2732167411 hasConcept C55493867 @default.