Matches in SemOpenAlex for { <https://semopenalex.org/work/W2732267215> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2732267215 endingPage "404" @default.
- W2732267215 startingPage "386" @default.
- W2732267215 abstract "• A seasonal rolling grey forecasting model for urban traffic flow was proposed. • The new information priority of the proposed model was proved by rigorous matrix perturbation analysis. • The proposed model provides a new perspective on the seasonal and limited data characteristics of traffic flows. • Four time intervals of traffic forecasting show that the proposed model has good adaptability and stability. Accurate real-time prediction of urban traffic flows is one of the most important problems in traffic management and control optimization research. Short-term traffic flow has complex stochastic and nonlinear characteristics, and it shows a similar seasonality within intraday and weekly trends. Based on these properties, we propose an improved binding cycle truncation accumulated generating operation seasonal grey rolling forecasting model. In the new model, the traffic flow sequence of seasonal fluctuation is converted to a flat sequence using the cycle truncation accumulated generating operation. Then, grey modeling of the cycle truncation accumulated generating operation sequence weakens the stochastic disturbances and highlights the intrinsic grey exponential law after the sequence is accumulated. Finally, rolling forecasts of the limited data reflect the new information priority and timeliness of the grey prediction. Two numerical traffic flow examples from China and Canada, including four groups at different time intervals (1 h, 15 min, 10 min, and 5 min), are used to verify the performance of the new model under different traffic flow conditions. The prediction results show that the model has good adaptability and stability and can effectively predict the seasonal variations in traffic flow. In 15 or 10 min traffic flow forecasts, the proposed model shows better performance than the autoregressive moving average model, wavelet neural network model and seasonal discrete grey forecasting model." @default.
- W2732267215 created "2017-07-14" @default.
- W2732267215 creator A5019614817 @default.
- W2732267215 creator A5085139070 @default.
- W2732267215 creator A5086797639 @default.
- W2732267215 creator A5091879506 @default.
- W2732267215 date "2017-11-01" @default.
- W2732267215 modified "2023-10-17" @default.
- W2732267215 title "An improved seasonal rolling grey forecasting model using a cycle truncation accumulated generating operation for traffic flow" @default.
- W2732267215 cites W1965586820 @default.
- W2732267215 cites W1973943669 @default.
- W2732267215 cites W1989574891 @default.
- W2732267215 cites W1992665910 @default.
- W2732267215 cites W1996320907 @default.
- W2732267215 cites W2002644193 @default.
- W2732267215 cites W2009196988 @default.
- W2732267215 cites W2028489066 @default.
- W2732267215 cites W2037327279 @default.
- W2732267215 cites W2040297119 @default.
- W2732267215 cites W2049952439 @default.
- W2732267215 cites W2061062671 @default.
- W2732267215 cites W2093564481 @default.
- W2732267215 cites W2097594725 @default.
- W2732267215 cites W2131739422 @default.
- W2732267215 cites W2131819535 @default.
- W2732267215 cites W2139606794 @default.
- W2732267215 cites W2150010190 @default.
- W2732267215 cites W2156206597 @default.
- W2732267215 cites W2288587367 @default.
- W2732267215 cites W2367028639 @default.
- W2732267215 cites W3104556324 @default.
- W2732267215 doi "https://doi.org/10.1016/j.apm.2017.07.010" @default.
- W2732267215 hasPublicationYear "2017" @default.
- W2732267215 type Work @default.
- W2732267215 sameAs 2732267215 @default.
- W2732267215 citedByCount "96" @default.
- W2732267215 countsByYear W27322672152018 @default.
- W2732267215 countsByYear W27322672152019 @default.
- W2732267215 countsByYear W27322672152020 @default.
- W2732267215 countsByYear W27322672152021 @default.
- W2732267215 countsByYear W27322672152022 @default.
- W2732267215 countsByYear W27322672152023 @default.
- W2732267215 crossrefType "journal-article" @default.
- W2732267215 hasAuthorship W2732267215A5019614817 @default.
- W2732267215 hasAuthorship W2732267215A5085139070 @default.
- W2732267215 hasAuthorship W2732267215A5086797639 @default.
- W2732267215 hasAuthorship W2732267215A5091879506 @default.
- W2732267215 hasBestOaLocation W27322672151 @default.
- W2732267215 hasConcept C105795698 @default.
- W2732267215 hasConcept C106195933 @default.
- W2732267215 hasConcept C154945302 @default.
- W2732267215 hasConcept C177606310 @default.
- W2732267215 hasConcept C18903297 @default.
- W2732267215 hasConcept C207512268 @default.
- W2732267215 hasConcept C2775924081 @default.
- W2732267215 hasConcept C33923547 @default.
- W2732267215 hasConcept C38652104 @default.
- W2732267215 hasConcept C41008148 @default.
- W2732267215 hasConcept C47446073 @default.
- W2732267215 hasConcept C86803240 @default.
- W2732267215 hasConceptScore W2732267215C105795698 @default.
- W2732267215 hasConceptScore W2732267215C106195933 @default.
- W2732267215 hasConceptScore W2732267215C154945302 @default.
- W2732267215 hasConceptScore W2732267215C177606310 @default.
- W2732267215 hasConceptScore W2732267215C18903297 @default.
- W2732267215 hasConceptScore W2732267215C207512268 @default.
- W2732267215 hasConceptScore W2732267215C2775924081 @default.
- W2732267215 hasConceptScore W2732267215C33923547 @default.
- W2732267215 hasConceptScore W2732267215C38652104 @default.
- W2732267215 hasConceptScore W2732267215C41008148 @default.
- W2732267215 hasConceptScore W2732267215C47446073 @default.
- W2732267215 hasConceptScore W2732267215C86803240 @default.
- W2732267215 hasFunder F4320321001 @default.
- W2732267215 hasLocation W27322672151 @default.
- W2732267215 hasOpenAccess W2732267215 @default.
- W2732267215 hasPrimaryLocation W27322672151 @default.
- W2732267215 hasRelatedWork W1970437106 @default.
- W2732267215 hasRelatedWork W1980807100 @default.
- W2732267215 hasRelatedWork W2350459918 @default.
- W2732267215 hasRelatedWork W2358945368 @default.
- W2732267215 hasRelatedWork W2371695270 @default.
- W2732267215 hasRelatedWork W2385509822 @default.
- W2732267215 hasRelatedWork W2807945054 @default.
- W2732267215 hasRelatedWork W3127301634 @default.
- W2732267215 hasRelatedWork W4232148501 @default.
- W2732267215 hasRelatedWork W4308010965 @default.
- W2732267215 hasVolume "51" @default.
- W2732267215 isParatext "false" @default.
- W2732267215 isRetracted "false" @default.
- W2732267215 magId "2732267215" @default.
- W2732267215 workType "article" @default.