Matches in SemOpenAlex for { <https://semopenalex.org/work/W2732345723> ?p ?o ?g. }
- W2732345723 endingPage "182" @default.
- W2732345723 startingPage "174" @default.
- W2732345723 abstract "A remote garment fit evaluation model using machine-learning technique is proposed to estimate garment fit without any real try-on.Digital clothing pressures, generated from a 3D garment CAD software, were taken into account during the remote garment fit evaluation.Our proposed model has significance in garment e-shopping. Presently, garment fit evaluation mainly focuses on real try-on, and rarely deals with virtual try-on. With the rapid development of E-commerce, there is a profound growth of garment purchases through the internet. In this context, fit evaluation of virtual garment try-on is vital in the clothing industry. In this paper, we propose a Naive Bayes-based model to evaluate garment fit. The inputs of the proposed model are digital clothing pressures of different body parts, generated from a 3D garment CAD software; while the output is the predicted result of garment fit (fit or unfit). To construct and train the proposed model, data on digital clothing pressures and garment real fit was collected for input and output learning data respectively. By learning from these data, our proposed model can predict garment fit rapidly and automatically without any real try-on; therefore, it can be applied to remote garment fit evaluation in the context of e-shopping. Finally, the effectiveness of our proposed method was validated using a set of test samples. Test results showed that digital clothing pressure is a better index than ease allowance to evaluate garment fit, and machine learning-based garment fit evaluation methods have higher prediction accuracies." @default.
- W2732345723 created "2017-07-14" @default.
- W2732345723 creator A5023372230 @default.
- W2732345723 creator A5028407427 @default.
- W2732345723 creator A5029101171 @default.
- W2732345723 creator A5037747867 @default.
- W2732345723 creator A5039868268 @default.
- W2732345723 creator A5048288794 @default.
- W2732345723 date "2017-10-01" @default.
- W2732345723 modified "2023-10-16" @default.
- W2732345723 title "Fit evaluation of virtual garment try-on by learning from digital pressure data" @default.
- W2732345723 cites W1909657471 @default.
- W2732345723 cites W1965586820 @default.
- W2732345723 cites W1967362770 @default.
- W2732345723 cites W1968475341 @default.
- W2732345723 cites W1983711430 @default.
- W2732345723 cites W1985209894 @default.
- W2732345723 cites W1985516089 @default.
- W2732345723 cites W1986463406 @default.
- W2732345723 cites W1997754540 @default.
- W2732345723 cites W1998242341 @default.
- W2732345723 cites W2000373992 @default.
- W2732345723 cites W2000586530 @default.
- W2732345723 cites W2002238929 @default.
- W2732345723 cites W2008077831 @default.
- W2732345723 cites W2014697970 @default.
- W2732345723 cites W2018140620 @default.
- W2732345723 cites W2045976178 @default.
- W2732345723 cites W2047585677 @default.
- W2732345723 cites W2050992455 @default.
- W2732345723 cites W2067819063 @default.
- W2732345723 cites W2078446800 @default.
- W2732345723 cites W2079305564 @default.
- W2732345723 cites W2079307595 @default.
- W2732345723 cites W2084118361 @default.
- W2732345723 cites W2084759840 @default.
- W2732345723 cites W2094694112 @default.
- W2732345723 cites W2106677047 @default.
- W2732345723 cites W2112645639 @default.
- W2732345723 cites W2115144687 @default.
- W2732345723 cites W2117049633 @default.
- W2732345723 cites W2117307048 @default.
- W2732345723 cites W2132697108 @default.
- W2732345723 cites W2134134203 @default.
- W2732345723 cites W2140785063 @default.
- W2732345723 cites W2141440210 @default.
- W2732345723 cites W2158235752 @default.
- W2732345723 cites W2187652739 @default.
- W2732345723 cites W2516353298 @default.
- W2732345723 cites W2522880150 @default.
- W2732345723 cites W2525088228 @default.
- W2732345723 cites W2605797977 @default.
- W2732345723 cites W2606667457 @default.
- W2732345723 doi "https://doi.org/10.1016/j.knosys.2017.07.007" @default.
- W2732345723 hasPublicationYear "2017" @default.
- W2732345723 type Work @default.
- W2732345723 sameAs 2732345723 @default.
- W2732345723 citedByCount "42" @default.
- W2732345723 countsByYear W27323457232018 @default.
- W2732345723 countsByYear W27323457232019 @default.
- W2732345723 countsByYear W27323457232020 @default.
- W2732345723 countsByYear W27323457232021 @default.
- W2732345723 countsByYear W27323457232022 @default.
- W2732345723 countsByYear W27323457232023 @default.
- W2732345723 crossrefType "journal-article" @default.
- W2732345723 hasAuthorship W2732345723A5023372230 @default.
- W2732345723 hasAuthorship W2732345723A5028407427 @default.
- W2732345723 hasAuthorship W2732345723A5029101171 @default.
- W2732345723 hasAuthorship W2732345723A5037747867 @default.
- W2732345723 hasAuthorship W2732345723A5039868268 @default.
- W2732345723 hasAuthorship W2732345723A5048288794 @default.
- W2732345723 hasConcept C107457646 @default.
- W2732345723 hasConcept C119857082 @default.
- W2732345723 hasConcept C124101348 @default.
- W2732345723 hasConcept C154945302 @default.
- W2732345723 hasConcept C2522767166 @default.
- W2732345723 hasConcept C41008148 @default.
- W2732345723 hasConceptScore W2732345723C107457646 @default.
- W2732345723 hasConceptScore W2732345723C119857082 @default.
- W2732345723 hasConceptScore W2732345723C124101348 @default.
- W2732345723 hasConceptScore W2732345723C154945302 @default.
- W2732345723 hasConceptScore W2732345723C2522767166 @default.
- W2732345723 hasConceptScore W2732345723C41008148 @default.
- W2732345723 hasFunder F4320322725 @default.
- W2732345723 hasLocation W27323457231 @default.
- W2732345723 hasOpenAccess W2732345723 @default.
- W2732345723 hasPrimaryLocation W27323457231 @default.
- W2732345723 hasRelatedWork W2961085424 @default.
- W2732345723 hasRelatedWork W3046775127 @default.
- W2732345723 hasRelatedWork W3107602296 @default.
- W2732345723 hasRelatedWork W3170094116 @default.
- W2732345723 hasRelatedWork W3209574120 @default.
- W2732345723 hasRelatedWork W4205958290 @default.
- W2732345723 hasRelatedWork W4286629047 @default.
- W2732345723 hasRelatedWork W4306321456 @default.
- W2732345723 hasRelatedWork W4306674287 @default.
- W2732345723 hasRelatedWork W4224009465 @default.
- W2732345723 hasVolume "133" @default.