Matches in SemOpenAlex for { <https://semopenalex.org/work/W2732428493> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2732428493 abstract "A methodology as well as a suggested solution to the problem of unsupervised anomaly detection for contextual anomalies is presented. Using a combination of statistical and clustering approaches, an ensemble of algorithms provide automatic anomaly detection in an Application-to-person networking environment which can be scaled to different domains using hierarchical time series data. The aim of this thesis is to further advance the field of anomaly detection and to provide conclusions with regards to the usability, maintainability and trustworthiness of unsupervised anomaly detection frameworks. Applications in the domain of unsupervised anomaly detection are hard to evaluate, thus methods as well as future work, which can be used to further create unmitigated assertions about any data set, is investigated. An introduction to the concepts underlying anomaly detection as well as an implementation of the concepts are presented. Principles of machine learning are applied using static thresholds and assumptions about the data set being monitored. No active learning or dynamic adjustments of the anomaly detection framework is applied with the drawback of limiting the resulting classification but still providing clear and robust insights into the analyzed data. It is shown that purely statistical or naive probabilistic assumptions about any data monitored is inconclusive in producing a fair estimation of anomalies. For a setting where the utility of an anomaly detection framework are not adamant to the survival of a monitoring system, the proposed solution works adequately. Since the results have not been validated, no conclusions can be drawn with regards to recall and precision metrics." @default.
- W2732428493 created "2017-07-14" @default.
- W2732428493 creator A5040772718 @default.
- W2732428493 creator A5049380781 @default.
- W2732428493 date "2017-01-01" @default.
- W2732428493 modified "2023-09-27" @default.
- W2732428493 title "Ensemble based unsupervised anomaly detection" @default.
- W2732428493 hasPublicationYear "2017" @default.
- W2732428493 type Work @default.
- W2732428493 sameAs 2732428493 @default.
- W2732428493 citedByCount "0" @default.
- W2732428493 crossrefType "journal-article" @default.
- W2732428493 hasAuthorship W2732428493A5040772718 @default.
- W2732428493 hasAuthorship W2732428493A5049380781 @default.
- W2732428493 hasConcept C119857082 @default.
- W2732428493 hasConcept C121332964 @default.
- W2732428493 hasConcept C124101348 @default.
- W2732428493 hasConcept C12997251 @default.
- W2732428493 hasConcept C154945302 @default.
- W2732428493 hasConcept C177264268 @default.
- W2732428493 hasConcept C199360897 @default.
- W2732428493 hasConcept C26873012 @default.
- W2732428493 hasConcept C41008148 @default.
- W2732428493 hasConcept C45942800 @default.
- W2732428493 hasConcept C49937458 @default.
- W2732428493 hasConcept C73555534 @default.
- W2732428493 hasConcept C739882 @default.
- W2732428493 hasConcept C8038995 @default.
- W2732428493 hasConceptScore W2732428493C119857082 @default.
- W2732428493 hasConceptScore W2732428493C121332964 @default.
- W2732428493 hasConceptScore W2732428493C124101348 @default.
- W2732428493 hasConceptScore W2732428493C12997251 @default.
- W2732428493 hasConceptScore W2732428493C154945302 @default.
- W2732428493 hasConceptScore W2732428493C177264268 @default.
- W2732428493 hasConceptScore W2732428493C199360897 @default.
- W2732428493 hasConceptScore W2732428493C26873012 @default.
- W2732428493 hasConceptScore W2732428493C41008148 @default.
- W2732428493 hasConceptScore W2732428493C45942800 @default.
- W2732428493 hasConceptScore W2732428493C49937458 @default.
- W2732428493 hasConceptScore W2732428493C73555534 @default.
- W2732428493 hasConceptScore W2732428493C739882 @default.
- W2732428493 hasConceptScore W2732428493C8038995 @default.
- W2732428493 hasLocation W27324284931 @default.
- W2732428493 hasOpenAccess W2732428493 @default.
- W2732428493 hasPrimaryLocation W27324284931 @default.
- W2732428493 hasRelatedWork W2000021406 @default.
- W2732428493 hasRelatedWork W2337344967 @default.
- W2732428493 hasRelatedWork W2589560577 @default.
- W2732428493 hasRelatedWork W2809166736 @default.
- W2732428493 hasRelatedWork W2897155075 @default.
- W2732428493 hasRelatedWork W2912592349 @default.
- W2732428493 hasRelatedWork W2972530384 @default.
- W2732428493 hasRelatedWork W3085114395 @default.
- W2732428493 hasRelatedWork W3087090211 @default.
- W2732428493 hasRelatedWork W3089397955 @default.
- W2732428493 hasRelatedWork W309312769 @default.
- W2732428493 hasRelatedWork W3109541357 @default.
- W2732428493 hasRelatedWork W3138332883 @default.
- W2732428493 hasRelatedWork W3138401877 @default.
- W2732428493 hasRelatedWork W3155988082 @default.
- W2732428493 hasRelatedWork W3164768164 @default.
- W2732428493 hasRelatedWork W3178763691 @default.
- W2732428493 hasRelatedWork W3190130106 @default.
- W2732428493 hasRelatedWork W3193528524 @default.
- W2732428493 hasRelatedWork W3197649772 @default.
- W2732428493 isParatext "false" @default.
- W2732428493 isRetracted "false" @default.
- W2732428493 magId "2732428493" @default.
- W2732428493 workType "article" @default.