Matches in SemOpenAlex for { <https://semopenalex.org/work/W2732700512> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2732700512 endingPage "553" @default.
- W2732700512 startingPage "533" @default.
- W2732700512 abstract "Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as GA, PSO, ACO and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR feature selection are proposed. SGALA algorithm uses advantages of Genetic algorithm and Learning Automata sequentially and the MGALA algorithm uses advantages of Genetic Algorithm and Learning Automata simultaneously. We applied our proposed algorithms to select the minimum possible number of features from three different datasets and also we observed that the MGALA and SGALA algorithms had the best outcome independently and in average compared to other feature selection algorithms. Through comparison of our proposed algorithms, we deduced that the rate of convergence to optimal result in MGALA and SGALA algorithms were better than the rate of GA, ACO, PSO and LA algorithms. In the end, the results of GA, ACO, PSO, LA, SGALA, and MGALA algorithms were applied as the input of LS-SVR model and the results from LS-SVR models showed that the LS-SVR model had more predictive ability with the input from SGALA and MGALA algorithms than the input from all other mentioned algorithms. Therefore, the results have corroborated that not only is the predictive efficiency of proposed algorithms better, but their rate of convergence is also superior to the all other mentioned algorithms." @default.
- W2732700512 created "2017-07-14" @default.
- W2732700512 creator A5030421501 @default.
- W2732700512 creator A5031590552 @default.
- W2732700512 creator A5042844099 @default.
- W2732700512 creator A5068106181 @default.
- W2732700512 date "2017-01-01" @default.
- W2732700512 modified "2023-09-25" @default.
- W2732700512 title "Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR." @default.
- W2732700512 cites W1974569237 @default.
- W2732700512 cites W1990899207 @default.
- W2732700512 cites W2004200900 @default.
- W2732700512 cites W2014516257 @default.
- W2732700512 cites W2043767998 @default.
- W2732700512 cites W2068199267 @default.
- W2732700512 cites W2086190989 @default.
- W2732700512 cites W2087661061 @default.
- W2732700512 cites W2099071242 @default.
- W2732700512 cites W2129659619 @default.
- W2732700512 cites W2144330285 @default.
- W2732700512 cites W2197112043 @default.
- W2732700512 cites W2204819850 @default.
- W2732700512 cites W2344681634 @default.
- W2732700512 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5603862" @default.
- W2732700512 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28979308" @default.
- W2732700512 hasPublicationYear "2017" @default.
- W2732700512 type Work @default.
- W2732700512 sameAs 2732700512 @default.
- W2732700512 citedByCount "6" @default.
- W2732700512 countsByYear W27327005122018 @default.
- W2732700512 countsByYear W27327005122019 @default.
- W2732700512 countsByYear W27327005122021 @default.
- W2732700512 crossrefType "journal-article" @default.
- W2732700512 hasAuthorship W2732700512A5030421501 @default.
- W2732700512 hasAuthorship W2732700512A5031590552 @default.
- W2732700512 hasAuthorship W2732700512A5042844099 @default.
- W2732700512 hasAuthorship W2732700512A5068106181 @default.
- W2732700512 hasConcept C112505250 @default.
- W2732700512 hasConcept C11413529 @default.
- W2732700512 hasConcept C117765406 @default.
- W2732700512 hasConcept C119857082 @default.
- W2732700512 hasConcept C138885662 @default.
- W2732700512 hasConcept C148483581 @default.
- W2732700512 hasConcept C154945302 @default.
- W2732700512 hasConcept C162324750 @default.
- W2732700512 hasConcept C17061570 @default.
- W2732700512 hasConcept C173801870 @default.
- W2732700512 hasConcept C184497298 @default.
- W2732700512 hasConcept C2776401178 @default.
- W2732700512 hasConcept C2776807809 @default.
- W2732700512 hasConcept C2777303404 @default.
- W2732700512 hasConcept C41008148 @default.
- W2732700512 hasConcept C41895202 @default.
- W2732700512 hasConcept C50522688 @default.
- W2732700512 hasConcept C50644808 @default.
- W2732700512 hasConcept C81917197 @default.
- W2732700512 hasConcept C8880873 @default.
- W2732700512 hasConcept C95627357 @default.
- W2732700512 hasConceptScore W2732700512C112505250 @default.
- W2732700512 hasConceptScore W2732700512C11413529 @default.
- W2732700512 hasConceptScore W2732700512C117765406 @default.
- W2732700512 hasConceptScore W2732700512C119857082 @default.
- W2732700512 hasConceptScore W2732700512C138885662 @default.
- W2732700512 hasConceptScore W2732700512C148483581 @default.
- W2732700512 hasConceptScore W2732700512C154945302 @default.
- W2732700512 hasConceptScore W2732700512C162324750 @default.
- W2732700512 hasConceptScore W2732700512C17061570 @default.
- W2732700512 hasConceptScore W2732700512C173801870 @default.
- W2732700512 hasConceptScore W2732700512C184497298 @default.
- W2732700512 hasConceptScore W2732700512C2776401178 @default.
- W2732700512 hasConceptScore W2732700512C2776807809 @default.
- W2732700512 hasConceptScore W2732700512C2777303404 @default.
- W2732700512 hasConceptScore W2732700512C41008148 @default.
- W2732700512 hasConceptScore W2732700512C41895202 @default.
- W2732700512 hasConceptScore W2732700512C50522688 @default.
- W2732700512 hasConceptScore W2732700512C50644808 @default.
- W2732700512 hasConceptScore W2732700512C81917197 @default.
- W2732700512 hasConceptScore W2732700512C8880873 @default.
- W2732700512 hasConceptScore W2732700512C95627357 @default.
- W2732700512 hasIssue "2" @default.
- W2732700512 hasLocation W27327005121 @default.
- W2732700512 hasOpenAccess W2732700512 @default.
- W2732700512 hasPrimaryLocation W27327005121 @default.
- W2732700512 hasRelatedWork W2350397055 @default.
- W2732700512 hasRelatedWork W2353098167 @default.
- W2732700512 hasRelatedWork W2373257156 @default.
- W2732700512 hasRelatedWork W3163334550 @default.
- W2732700512 hasRelatedWork W3174196512 @default.
- W2732700512 hasRelatedWork W3200179079 @default.
- W2732700512 hasRelatedWork W3217566627 @default.
- W2732700512 hasRelatedWork W4212852473 @default.
- W2732700512 hasRelatedWork W4225307033 @default.
- W2732700512 hasRelatedWork W4225360065 @default.
- W2732700512 hasVolume "16" @default.
- W2732700512 isParatext "false" @default.
- W2732700512 isRetracted "false" @default.
- W2732700512 magId "2732700512" @default.
- W2732700512 workType "article" @default.