Matches in SemOpenAlex for { <https://semopenalex.org/work/W2733056439> ?p ?o ?g. }
- W2733056439 endingPage "151" @default.
- W2733056439 startingPage "118" @default.
- W2733056439 abstract "Feature selection for transient classification is the problem of choosing among several monitored parameters (i.e., the features) to be used for efficiently recognizing the developing transient patterns. It is a critical issue for the application of “on condition” diagnostic techniques in complex systems, such as the nuclear power plants, where hundreds of parameters are measured. Indeed, irrelevant and noisy features have been shown to unnecessarily increase the complexity of the classification problem and degrade the diagnostic performance. In this paper, the problem of selecting the features to be used for efficient transient classification is tackled by means of multiobjective genetic algorithms. The approach leads to the identification of a family of equivalently optimal subsets of features, in the Pareto sense. However, difficulties in the convergence of the standard Pareto-based multiobjective genetic algorithm search in large feature spaces may arise in terms of representativeness of the identified Pareto front whose elements may turn out to be unevenly distributed in the objective functions space, thus not providing a full picture of the potential Pareto-optimal solutions. To overcome this problem, a niched Pareto genetic algorithm is embraced in this work. The performance of the feature subsets examined during the search is evaluated in terms of two optimization objectives: the classification accuracy of a Fuzzy K-Nearest Neighbors classifier and the number of features in the subsets. During the genetic search, the algorithm applies a controlled “niching pressure” to spread out the population in the search space so that convergence is shared on different niches of the Pareto front, which is thus evenly covered. The method is tested on a diagnostic problem characterized by a very large number of process features available for the classification of simulated transients in the feedwater system of a boiling water reactor. The dynamics of the transient signals is captured by wavelet decomposition, which actually increases the complexity of the search for the optimal feature subsets by triplicating the number of features to be considered. © 2008 Wiley Periodicals, Inc." @default.
- W2733056439 created "2017-07-14" @default.
- W2733056439 creator A5007304896 @default.
- W2733056439 creator A5048799305 @default.
- W2733056439 creator A5089423808 @default.
- W2733056439 date "2009-02-01" @default.
- W2733056439 modified "2023-09-28" @default.
- W2733056439 title "Application of a niched Pareto genetic algorithm for selecting features for nuclear transients classification" @default.
- W2733056439 cites W1523989055 @default.
- W2733056439 cites W1603688956 @default.
- W2733056439 cites W1968535060 @default.
- W2733056439 cites W1976407234 @default.
- W2733056439 cites W1985186619 @default.
- W2733056439 cites W1986449098 @default.
- W2733056439 cites W1987781552 @default.
- W2733056439 cites W1992617793 @default.
- W2733056439 cites W1994252276 @default.
- W2733056439 cites W1998995856 @default.
- W2733056439 cites W2002645541 @default.
- W2733056439 cites W2006252838 @default.
- W2733056439 cites W2008020336 @default.
- W2733056439 cites W2017337590 @default.
- W2733056439 cites W2020296181 @default.
- W2733056439 cites W2031559584 @default.
- W2733056439 cites W2033353695 @default.
- W2733056439 cites W2038567802 @default.
- W2733056439 cites W2040584032 @default.
- W2733056439 cites W2040895929 @default.
- W2733056439 cites W2053908997 @default.
- W2733056439 cites W2053992189 @default.
- W2733056439 cites W2059859443 @default.
- W2733056439 cites W2067650768 @default.
- W2733056439 cites W2074708053 @default.
- W2733056439 cites W2077218694 @default.
- W2733056439 cites W2088121750 @default.
- W2733056439 cites W2093799708 @default.
- W2733056439 cites W2098907614 @default.
- W2733056439 cites W2100253618 @default.
- W2733056439 cites W2100909564 @default.
- W2733056439 cites W2109778277 @default.
- W2733056439 cites W2109865546 @default.
- W2733056439 cites W2112364618 @default.
- W2733056439 cites W2115589652 @default.
- W2733056439 cites W2116661285 @default.
- W2733056439 cites W2121365620 @default.
- W2733056439 cites W2124180027 @default.
- W2733056439 cites W2126105956 @default.
- W2733056439 cites W2135190479 @default.
- W2733056439 cites W2135821913 @default.
- W2733056439 cites W2139642264 @default.
- W2733056439 cites W2143153057 @default.
- W2733056439 cites W2154605267 @default.
- W2733056439 cites W2160334298 @default.
- W2733056439 cites W2316431536 @default.
- W2733056439 cites W2485965102 @default.
- W2733056439 cites W4249247926 @default.
- W2733056439 doi "https://doi.org/10.1002/int.20328" @default.
- W2733056439 hasPublicationYear "2009" @default.
- W2733056439 type Work @default.
- W2733056439 sameAs 2733056439 @default.
- W2733056439 citedByCount "13" @default.
- W2733056439 countsByYear W27330564392012 @default.
- W2733056439 countsByYear W27330564392013 @default.
- W2733056439 countsByYear W27330564392015 @default.
- W2733056439 countsByYear W27330564392017 @default.
- W2733056439 countsByYear W27330564392018 @default.
- W2733056439 countsByYear W27330564392021 @default.
- W2733056439 countsByYear W27330564392023 @default.
- W2733056439 crossrefType "journal-article" @default.
- W2733056439 hasAuthorship W2733056439A5007304896 @default.
- W2733056439 hasAuthorship W2733056439A5048799305 @default.
- W2733056439 hasAuthorship W2733056439A5089423808 @default.
- W2733056439 hasBestOaLocation W27330564391 @default.
- W2733056439 hasConcept C11413529 @default.
- W2733056439 hasConcept C119857082 @default.
- W2733056439 hasConcept C124101348 @default.
- W2733056439 hasConcept C126255220 @default.
- W2733056439 hasConcept C137635306 @default.
- W2733056439 hasConcept C138885662 @default.
- W2733056439 hasConcept C148483581 @default.
- W2733056439 hasConcept C154945302 @default.
- W2733056439 hasConcept C162324750 @default.
- W2733056439 hasConcept C2776401178 @default.
- W2733056439 hasConcept C2777303404 @default.
- W2733056439 hasConcept C33923547 @default.
- W2733056439 hasConcept C41008148 @default.
- W2733056439 hasConcept C41895202 @default.
- W2733056439 hasConcept C50522688 @default.
- W2733056439 hasConcept C58758708 @default.
- W2733056439 hasConcept C68781425 @default.
- W2733056439 hasConcept C8880873 @default.
- W2733056439 hasConcept C95623464 @default.
- W2733056439 hasConceptScore W2733056439C11413529 @default.
- W2733056439 hasConceptScore W2733056439C119857082 @default.
- W2733056439 hasConceptScore W2733056439C124101348 @default.
- W2733056439 hasConceptScore W2733056439C126255220 @default.
- W2733056439 hasConceptScore W2733056439C137635306 @default.
- W2733056439 hasConceptScore W2733056439C138885662 @default.