Matches in SemOpenAlex for { <https://semopenalex.org/work/W2733061279> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2733061279 abstract "As deep learning has been widespread in a wide range of applications, its training speed and convergence have become crucial. Among different hyperparameters existed in the gradient descent algorithm, the learning rate has an essential role in the learning procedure. This paper presents a new statistical algorithm for adapting the learning rate during the training process. The proposed T-LRA (trend-based learning rate annealing) algorithm is calculated based on the statistical trends seen in the previous training iterations. The proposed algorithm is computationally very cheap and applicable to online training for very deep networks and large datasets. This efficient, simple, and well-principled algorithm not only improves the deep learning results, but also speeds up the training convergence. Experimental results on a multimedia dataset and deep learning networks demonstrate the effectiveness and efficiency of the proposed algorithm." @default.
- W2733061279 created "2017-07-14" @default.
- W2733061279 creator A5049219173 @default.
- W2733061279 creator A5084955278 @default.
- W2733061279 date "2017-04-01" @default.
- W2733061279 modified "2023-09-24" @default.
- W2733061279 title "T-LRA: Trend-Based Learning Rate Annealing for Deep Neural Networks" @default.
- W2733061279 cites W114517082 @default.
- W2733061279 cites W1541154936 @default.
- W2733061279 cites W1832693441 @default.
- W2733061279 cites W1943729713 @default.
- W2733061279 cites W1989502880 @default.
- W2733061279 cites W1990151882 @default.
- W2733061279 cites W1995331786 @default.
- W2733061279 cites W2007818389 @default.
- W2733061279 cites W2018764772 @default.
- W2733061279 cites W2075803426 @default.
- W2733061279 cites W2076605490 @default.
- W2733061279 cites W2098147781 @default.
- W2733061279 cites W2119490411 @default.
- W2733061279 cites W2120337034 @default.
- W2733061279 cites W2125365101 @default.
- W2733061279 cites W2140453016 @default.
- W2733061279 cites W2140763925 @default.
- W2733061279 cites W2145607950 @default.
- W2733061279 cites W2155893237 @default.
- W2733061279 cites W2160815625 @default.
- W2733061279 cites W2194775991 @default.
- W2733061279 cites W2567219564 @default.
- W2733061279 cites W2577926288 @default.
- W2733061279 cites W2919115771 @default.
- W2733061279 cites W3123927815 @default.
- W2733061279 cites W4240446014 @default.
- W2733061279 cites W4256271404 @default.
- W2733061279 doi "https://doi.org/10.1109/bigmm.2017.36" @default.
- W2733061279 hasPublicationYear "2017" @default.
- W2733061279 type Work @default.
- W2733061279 sameAs 2733061279 @default.
- W2733061279 citedByCount "3" @default.
- W2733061279 countsByYear W27330612792018 @default.
- W2733061279 countsByYear W27330612792019 @default.
- W2733061279 countsByYear W27330612792020 @default.
- W2733061279 crossrefType "proceedings-article" @default.
- W2733061279 hasAuthorship W2733061279A5049219173 @default.
- W2733061279 hasAuthorship W2733061279A5084955278 @default.
- W2733061279 hasConcept C108583219 @default.
- W2733061279 hasConcept C154945302 @default.
- W2733061279 hasConcept C191897082 @default.
- W2733061279 hasConcept C192562407 @default.
- W2733061279 hasConcept C2777855556 @default.
- W2733061279 hasConcept C2984842247 @default.
- W2733061279 hasConcept C41008148 @default.
- W2733061279 hasConcept C50644808 @default.
- W2733061279 hasConceptScore W2733061279C108583219 @default.
- W2733061279 hasConceptScore W2733061279C154945302 @default.
- W2733061279 hasConceptScore W2733061279C191897082 @default.
- W2733061279 hasConceptScore W2733061279C192562407 @default.
- W2733061279 hasConceptScore W2733061279C2777855556 @default.
- W2733061279 hasConceptScore W2733061279C2984842247 @default.
- W2733061279 hasConceptScore W2733061279C41008148 @default.
- W2733061279 hasConceptScore W2733061279C50644808 @default.
- W2733061279 hasLocation W27330612791 @default.
- W2733061279 hasOpenAccess W2733061279 @default.
- W2733061279 hasPrimaryLocation W27330612791 @default.
- W2733061279 hasRelatedWork W2279398222 @default.
- W2733061279 hasRelatedWork W2620920084 @default.
- W2733061279 hasRelatedWork W2915754718 @default.
- W2733061279 hasRelatedWork W2950066684 @default.
- W2733061279 hasRelatedWork W3082895349 @default.
- W2733061279 hasRelatedWork W3124304076 @default.
- W2733061279 hasRelatedWork W3139644427 @default.
- W2733061279 hasRelatedWork W4298388782 @default.
- W2733061279 hasRelatedWork W4299822940 @default.
- W2733061279 hasRelatedWork W1829305295 @default.
- W2733061279 isParatext "false" @default.
- W2733061279 isRetracted "false" @default.
- W2733061279 magId "2733061279" @default.
- W2733061279 workType "article" @default.