Matches in SemOpenAlex for { <https://semopenalex.org/work/W2733139723> ?p ?o ?g. }
- W2733139723 endingPage "663" @default.
- W2733139723 startingPage "663" @default.
- W2733139723 abstract "Urban areas are a complex combination of various land-cover types, and show a variety of land-use structures and spatial layouts. Furthermore, the spectral similarity between built-up areas and bare land is a great challenge when using high spatial resolution remote sensing images to map urban areas, especially for images obtained in dry and cold seasons or high-latitude regions. In this study, a new procedure for urban area extraction is presented based on the high-level, regional, and line segment features of high spatial resolution satellite data. The urban morphology is also analyzed. Firstly, the primitive features—the morphological building index (MBI), the normalized difference vegetation index (NDVI), and line segments—are extracted from the original images. Chessboard segmentation is then used to segment the image into the same-size objects. In each object, advanced features are then extracted based on the MBI, the NDVI, and the line segments. Subsequently, object-oriented classification is implemented using the above features to distinguish urban areas from non-urban areas. In general, the boundaries of urban and non-urban areas are not very clear, and each urban area has its own spatial structure characteristic. Hence, in this study, an analysis of the urban morphology is carried out to obtain a clear regional structure, showing the main city, the surrounding new development zones, etc. The experimental results obtained with six WorldView-2 and Gaofen-2 images obtained from different regions and seasons demonstrate that the proposed method outperforms the current state-of-the-art methods." @default.
- W2733139723 created "2017-07-14" @default.
- W2733139723 creator A5031729932 @default.
- W2733139723 creator A5052441498 @default.
- W2733139723 creator A5060120202 @default.
- W2733139723 date "2017-06-28" @default.
- W2733139723 modified "2023-09-28" @default.
- W2733139723 title "Urban Area Extraction by Regional and Line Segment Feature Fusion and Urban Morphology Analysis" @default.
- W2733139723 cites W1964061986 @default.
- W2733139723 cites W1966411833 @default.
- W2733139723 cites W1969208324 @default.
- W2733139723 cites W1989919782 @default.
- W2733139723 cites W1990653740 @default.
- W2733139723 cites W1996534964 @default.
- W2733139723 cites W1996777760 @default.
- W2733139723 cites W2005672614 @default.
- W2733139723 cites W2006658341 @default.
- W2733139723 cites W2021278996 @default.
- W2733139723 cites W2026942553 @default.
- W2733139723 cites W2035168298 @default.
- W2733139723 cites W2044609898 @default.
- W2733139723 cites W2058436841 @default.
- W2733139723 cites W2058767877 @default.
- W2733139723 cites W2085665642 @default.
- W2733139723 cites W2094455438 @default.
- W2733139723 cites W2102566458 @default.
- W2733139723 cites W2103932719 @default.
- W2733139723 cites W2110161540 @default.
- W2733139723 cites W2110357101 @default.
- W2733139723 cites W2116639046 @default.
- W2733139723 cites W2129433145 @default.
- W2733139723 cites W2130121312 @default.
- W2733139723 cites W2131438174 @default.
- W2733139723 cites W2132637576 @default.
- W2733139723 cites W2133059825 @default.
- W2733139723 cites W2136635809 @default.
- W2733139723 cites W2147258346 @default.
- W2733139723 cites W2153635508 @default.
- W2733139723 cites W2155632266 @default.
- W2733139723 cites W2163114261 @default.
- W2733139723 cites W2290277228 @default.
- W2733139723 cites W2326674917 @default.
- W2733139723 cites W2327273398 @default.
- W2733139723 cites W2334867485 @default.
- W2733139723 cites W2342696299 @default.
- W2733139723 cites W2399482152 @default.
- W2733139723 cites W2504907417 @default.
- W2733139723 cites W2533591126 @default.
- W2733139723 cites W2581054824 @default.
- W2733139723 cites W2593542728 @default.
- W2733139723 cites W2610884537 @default.
- W2733139723 cites W2919115771 @default.
- W2733139723 cites W4288076010 @default.
- W2733139723 doi "https://doi.org/10.3390/rs9070663" @default.
- W2733139723 hasPublicationYear "2017" @default.
- W2733139723 type Work @default.
- W2733139723 sameAs 2733139723 @default.
- W2733139723 citedByCount "17" @default.
- W2733139723 countsByYear W27331397232017 @default.
- W2733139723 countsByYear W27331397232018 @default.
- W2733139723 countsByYear W27331397232019 @default.
- W2733139723 countsByYear W27331397232020 @default.
- W2733139723 countsByYear W27331397232021 @default.
- W2733139723 countsByYear W27331397232022 @default.
- W2733139723 countsByYear W27331397232023 @default.
- W2733139723 crossrefType "journal-article" @default.
- W2733139723 hasAuthorship W2733139723A5031729932 @default.
- W2733139723 hasAuthorship W2733139723A5052441498 @default.
- W2733139723 hasAuthorship W2733139723A5060120202 @default.
- W2733139723 hasBestOaLocation W27331397231 @default.
- W2733139723 hasConcept C100970517 @default.
- W2733139723 hasConcept C111368507 @default.
- W2733139723 hasConcept C115961682 @default.
- W2733139723 hasConcept C127313418 @default.
- W2733139723 hasConcept C127413603 @default.
- W2733139723 hasConcept C132651083 @default.
- W2733139723 hasConcept C138885662 @default.
- W2733139723 hasConcept C147176958 @default.
- W2733139723 hasConcept C1549246 @default.
- W2733139723 hasConcept C154945302 @default.
- W2733139723 hasConcept C185568154 @default.
- W2733139723 hasConcept C18903297 @default.
- W2733139723 hasConcept C205649164 @default.
- W2733139723 hasConcept C2776401178 @default.
- W2733139723 hasConcept C2779090739 @default.
- W2733139723 hasConcept C2780648208 @default.
- W2733139723 hasConcept C41008148 @default.
- W2733139723 hasConcept C41895202 @default.
- W2733139723 hasConcept C4792198 @default.
- W2733139723 hasConcept C49545453 @default.
- W2733139723 hasConcept C58640448 @default.
- W2733139723 hasConcept C62649853 @default.
- W2733139723 hasConcept C86803240 @default.
- W2733139723 hasConcept C89600930 @default.
- W2733139723 hasConcept C9417928 @default.
- W2733139723 hasConceptScore W2733139723C100970517 @default.
- W2733139723 hasConceptScore W2733139723C111368507 @default.
- W2733139723 hasConceptScore W2733139723C115961682 @default.