Matches in SemOpenAlex for { <https://semopenalex.org/work/W2733237124> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2733237124 abstract "Three machine learning classifiers: random forest, decision tree and support vector machine were used to build predictive models of an anti-mycobacterial ChEMBL database and evaluated for their predictive capability. Before the development of predictive models, data pre-processing was carried out to fix the class imbalance problem by applying cost-sensitive classifier, and filtration of data instance by supervised synthetic minority oversampling technique (SMOTE), spread subsample and resample method. The statistical evaluation indicated that random forest model was the best model as it showed the best accuracy 93.83%, specificity 90.5%, receiver operating characteristic (ROC) 0.984, MCC 0.772 and kappa statistics 0.768 in comparison to other models whereas LibSVM showed the highest sensitivity 94.4% compared with others. Additionally, toxicity predictive models based on SingleCellcall DSSTox carcinogenicity database (AID1189) was developed which resulted in random forest model as the best model. The deployment of both RF predictive models on two unknown datasets resulted in 1317 compounds out of 1554 approved drugs and 2234 compounds out of 18,746 ChEMBL anti-malarial dataset as non-toxic and anti-mycobacterial compounds. Thus machine learning models present highly efficient methods to find out novel hit anti-mycobacterial compounds. We suggest that such machine learning techniques could be very useful to screen drug candidates not only for tuberculosis but also for other diseases." @default.
- W2733237124 created "2017-07-14" @default.
- W2733237124 creator A5004882548 @default.
- W2733237124 creator A5010220536 @default.
- W2733237124 creator A5023401763 @default.
- W2733237124 creator A5057137716 @default.
- W2733237124 date "2017-01-01" @default.
- W2733237124 modified "2023-09-26" @default.
- W2733237124 title "Evaluation of predictive models based on random forest, decision tree and support vector machine classifiers and virtual screening of anti-mycobacterial compounds" @default.
- W2733237124 doi "https://doi.org/10.1504/ijcbdd.2017.10006007" @default.
- W2733237124 hasPublicationYear "2017" @default.
- W2733237124 type Work @default.
- W2733237124 sameAs 2733237124 @default.
- W2733237124 citedByCount "0" @default.
- W2733237124 crossrefType "journal-article" @default.
- W2733237124 hasAuthorship W2733237124A5004882548 @default.
- W2733237124 hasAuthorship W2733237124A5010220536 @default.
- W2733237124 hasAuthorship W2733237124A5023401763 @default.
- W2733237124 hasAuthorship W2733237124A5057137716 @default.
- W2733237124 hasConcept C119857082 @default.
- W2733237124 hasConcept C12267149 @default.
- W2733237124 hasConcept C124101348 @default.
- W2733237124 hasConcept C154945302 @default.
- W2733237124 hasConcept C169258074 @default.
- W2733237124 hasConcept C197323446 @default.
- W2733237124 hasConcept C2776257435 @default.
- W2733237124 hasConcept C31258907 @default.
- W2733237124 hasConcept C41008148 @default.
- W2733237124 hasConcept C52001869 @default.
- W2733237124 hasConcept C60644358 @default.
- W2733237124 hasConcept C63222358 @default.
- W2733237124 hasConcept C74187038 @default.
- W2733237124 hasConcept C84525736 @default.
- W2733237124 hasConcept C86803240 @default.
- W2733237124 hasConceptScore W2733237124C119857082 @default.
- W2733237124 hasConceptScore W2733237124C12267149 @default.
- W2733237124 hasConceptScore W2733237124C124101348 @default.
- W2733237124 hasConceptScore W2733237124C154945302 @default.
- W2733237124 hasConceptScore W2733237124C169258074 @default.
- W2733237124 hasConceptScore W2733237124C197323446 @default.
- W2733237124 hasConceptScore W2733237124C2776257435 @default.
- W2733237124 hasConceptScore W2733237124C31258907 @default.
- W2733237124 hasConceptScore W2733237124C41008148 @default.
- W2733237124 hasConceptScore W2733237124C52001869 @default.
- W2733237124 hasConceptScore W2733237124C60644358 @default.
- W2733237124 hasConceptScore W2733237124C63222358 @default.
- W2733237124 hasConceptScore W2733237124C74187038 @default.
- W2733237124 hasConceptScore W2733237124C84525736 @default.
- W2733237124 hasConceptScore W2733237124C86803240 @default.
- W2733237124 hasLocation W27332371241 @default.
- W2733237124 hasOpenAccess W2733237124 @default.
- W2733237124 hasPrimaryLocation W27332371241 @default.
- W2733237124 hasRelatedWork W1544174691 @default.
- W2733237124 hasRelatedWork W2780538070 @default.
- W2733237124 hasRelatedWork W2901317296 @default.
- W2733237124 hasRelatedWork W2912377779 @default.
- W2733237124 hasRelatedWork W2915841953 @default.
- W2733237124 hasRelatedWork W3020897463 @default.
- W2733237124 hasRelatedWork W3036095178 @default.
- W2733237124 hasRelatedWork W3094020089 @default.
- W2733237124 hasRelatedWork W3096445376 @default.
- W2733237124 hasRelatedWork W3107404799 @default.
- W2733237124 hasRelatedWork W3111216799 @default.
- W2733237124 hasRelatedWork W3134537993 @default.
- W2733237124 hasRelatedWork W3185516026 @default.
- W2733237124 hasRelatedWork W3191461861 @default.
- W2733237124 hasRelatedWork W3194703500 @default.
- W2733237124 hasRelatedWork W3196405387 @default.
- W2733237124 hasRelatedWork W3202148033 @default.
- W2733237124 hasRelatedWork W3204641204 @default.
- W2733237124 hasRelatedWork W3209417243 @default.
- W2733237124 hasRelatedWork W324777845 @default.
- W2733237124 isParatext "false" @default.
- W2733237124 isRetracted "false" @default.
- W2733237124 magId "2733237124" @default.
- W2733237124 workType "article" @default.