Matches in SemOpenAlex for { <https://semopenalex.org/work/W2733722012> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2733722012 abstract "Axial powder stream concentration between the nozzle end and the deposition point is an important process parameter in the laser aided material deposition process. The powder concentration is greatly influenced by the nozzle geometry in use. This paper describes the numerical and experimental analysis of this important parameter in relation to the coaxial nozzle. The experiments are performed with the different nozzle geometries to generate various flow patterns of the gravity fed powder in a cold stream. The results of the experimental analysis are compared with the numerical simulation and found justified. These results are used in concluding the significance of important nozzle parameters for various powder concentration modes. Introduction Laser deposition process consists of feeding the metal powder into a hot spot called as melt pool to form a melted zone which solidifies into a bead. The coaxial nozzle is widely used for this metal deposition process [3, 9]. The metal powder is fed through the nozzle in the melt pool in a coaxial system instead of the external tubes as in the side nozzle. Laser aided deposition quality largely depends on the powder stream structure below the nozzle [7]. The variation of the powder stream concentration in axial direction affects the material delivery rate at the deposition point and the interaction of the laser beam radiation with the powder stream [4]. High efficiency of the powder deposition in a coaxial system is an important subject for the study. The focusability of the stream structure is a key factor of the energy utilization and catchment efficiency of the coaxial nozzle [5]. It is found that most of the laser power reaches the substrate with some energy loss in the particles in laser deposition process [9]. This is sometimes caused by the shadow effect of one particle over another due to the absorption of the beam energy by the powder stream. The stream structure is mainly influenced by the powder flow settings and nozzle arrangements [5]. It is also found that the powder catchment increases with increase in the powder flow velocity [9]. The process of deposition involves control of various parameters like powder type, powder flow velocity and gas velocities. Though these are actual process parameters, the initial powder flow is defined by the nozzle geometry in use. Thus, optimizing the deposition nozzle for such process is not an easy task and hence requires a lot of experimentation and numerical simulation. It is difficult to find the literature explaining about the effect of nozzle geometry at the powder outlet area of the coaxial nozzle on the powder concentration mode. Though the above mentioned studies have been carried out, the detailed study needed to be done entailing the effect of the nozzle geometry at the powder passage on the flow mode. The initial consideration should be given in generating various types of powder streams by using different nozzle geometries at the powder outlet area. It is necessary to understand the proper powder flow behavior to determine the displacement of the powder between the nozzle and deposition point. This will help in getting the value for the distance of maximum concentration point of the merging streams" @default.
- W2733722012 created "2017-07-14" @default.
- W2733722012 creator A5073156141 @default.
- W2733722012 creator A5075574746 @default.
- W2733722012 creator A5077643198 @default.
- W2733722012 date "2004-08-04" @default.
- W2733722012 modified "2023-09-25" @default.
- W2733722012 title "Numerical and Experimental Analysis of the Powder Flow Streams in the Laser Aided Material Deposition Process" @default.
- W2733722012 cites W1981648150 @default.
- W2733722012 cites W2062538726 @default.
- W2733722012 cites W2067488580 @default.
- W2733722012 cites W2300339941 @default.
- W2733722012 cites W2895982287 @default.
- W2733722012 cites W42654800 @default.
- W2733722012 cites W2520333771 @default.
- W2733722012 doi "https://doi.org/10.26153/tsw/7017" @default.
- W2733722012 hasPublicationYear "2004" @default.
- W2733722012 type Work @default.
- W2733722012 sameAs 2733722012 @default.
- W2733722012 citedByCount "1" @default.
- W2733722012 countsByYear W27337220122017 @default.
- W2733722012 crossrefType "journal-article" @default.
- W2733722012 hasAuthorship W2733722012A5073156141 @default.
- W2733722012 hasAuthorship W2733722012A5075574746 @default.
- W2733722012 hasAuthorship W2733722012A5077643198 @default.
- W2733722012 hasConcept C127313418 @default.
- W2733722012 hasConcept C127413603 @default.
- W2733722012 hasConcept C151730666 @default.
- W2733722012 hasConcept C159985019 @default.
- W2733722012 hasConcept C191897082 @default.
- W2733722012 hasConcept C192562407 @default.
- W2733722012 hasConcept C2779661778 @default.
- W2733722012 hasConcept C2816523 @default.
- W2733722012 hasConcept C51221625 @default.
- W2733722012 hasConcept C544153396 @default.
- W2733722012 hasConcept C56200935 @default.
- W2733722012 hasConcept C64297162 @default.
- W2733722012 hasConcept C78519656 @default.
- W2733722012 hasConceptScore W2733722012C127313418 @default.
- W2733722012 hasConceptScore W2733722012C127413603 @default.
- W2733722012 hasConceptScore W2733722012C151730666 @default.
- W2733722012 hasConceptScore W2733722012C159985019 @default.
- W2733722012 hasConceptScore W2733722012C191897082 @default.
- W2733722012 hasConceptScore W2733722012C192562407 @default.
- W2733722012 hasConceptScore W2733722012C2779661778 @default.
- W2733722012 hasConceptScore W2733722012C2816523 @default.
- W2733722012 hasConceptScore W2733722012C51221625 @default.
- W2733722012 hasConceptScore W2733722012C544153396 @default.
- W2733722012 hasConceptScore W2733722012C56200935 @default.
- W2733722012 hasConceptScore W2733722012C64297162 @default.
- W2733722012 hasConceptScore W2733722012C78519656 @default.
- W2733722012 hasLocation W27337220121 @default.
- W2733722012 hasOpenAccess W2733722012 @default.
- W2733722012 hasPrimaryLocation W27337220121 @default.
- W2733722012 hasRelatedWork W1970972833 @default.
- W2733722012 hasRelatedWork W1997470391 @default.
- W2733722012 hasRelatedWork W2042511990 @default.
- W2733722012 hasRelatedWork W2074110695 @default.
- W2733722012 hasRelatedWork W2231868322 @default.
- W2733722012 hasRelatedWork W2295974494 @default.
- W2733722012 hasRelatedWork W2323778346 @default.
- W2733722012 hasRelatedWork W2379127431 @default.
- W2733722012 hasRelatedWork W2390837114 @default.
- W2733722012 hasRelatedWork W2593262788 @default.
- W2733722012 hasRelatedWork W2610032265 @default.
- W2733722012 hasRelatedWork W2657454721 @default.
- W2733722012 hasRelatedWork W2912782208 @default.
- W2733722012 hasRelatedWork W2756330296 @default.
- W2733722012 hasRelatedWork W2825794792 @default.
- W2733722012 hasRelatedWork W2848637264 @default.
- W2733722012 hasRelatedWork W2850030959 @default.
- W2733722012 hasRelatedWork W2851539419 @default.
- W2733722012 hasRelatedWork W2852461493 @default.
- W2733722012 hasRelatedWork W3099119883 @default.
- W2733722012 isParatext "false" @default.
- W2733722012 isRetracted "false" @default.
- W2733722012 magId "2733722012" @default.
- W2733722012 workType "article" @default.