Matches in SemOpenAlex for { <https://semopenalex.org/work/W2733875206> ?p ?o ?g. }
- W2733875206 endingPage "1793" @default.
- W2733875206 startingPage "1785" @default.
- W2733875206 abstract "ConspectusDynamical consideration that goes beyond the common Born–Oppenheimer approximation (BOA) becomes necessary when energy differences between electronic potential energy surfaces become small or vanish. One of the typical scenarios of the BOA breakdown in molecules beyond diatomics is a conical intersection (CI) of electronic potential energy surfaces. CIs provide an efficient mechanism for radiationless electronic transitions: acting as “funnels” for the nuclear wave function, they enable rapid conversion of the excessive electronic energy into the nuclear motion. In addition, CIs introduce nontrivial geometric phases (GPs) for both electronic and nuclear wave functions. These phases manifest themselves in change of the wave function signs if one considers an evolution of the system around the CI. This sign change is independent of the shape of the encircling contour and thus has a topological character. How these extra phases affect nonadiabatic dynamics is the main question that is addressed in this Account.We start by considering the simplest model providing the CI topology: two-dimensional two-state linear vibronic coupling model. Selecting this model instead of a real molecule has the advantage that various dynamical regimes can be easily modeled in the model by varying parameters, whereas any fixed molecule provides the system specific behavior that may not be very illustrative. After demonstrating when GP effects are important and how they modify the dynamics for two sets of initial conditions (starting from the ground and excited electronic states), we give examples of molecular systems where the described GP effects are crucial for adequate description of nonadiabatic dynamics. Interestingly, although the GP has a topological character, the extent to which accounting for GPs affect nuclear dynamics profoundly depends on topography of potential energy surfaces.Understanding an extent of changes introduced by the GP in chemical dynamics poses a problem of capturing GP effects by approximate methods of simulating nonadiabatic dynamics that can go beyond simple models. We assess the performance of both fully quantum (wave packet dynamics) and quantum-classical (surface-hopping, Ehrenfest, and quantum-classical Liouville equation) approaches in various cases where GP effects are important. It has been identified that the key to success in approximate methods is a method organization that prevents the quantum nuclear kinetic energy operator to act directly on adiabatic electronic wave functions." @default.
- W2733875206 created "2017-07-14" @default.
- W2733875206 creator A5052396114 @default.
- W2733875206 creator A5058051403 @default.
- W2733875206 creator A5080074500 @default.
- W2733875206 date "2017-06-30" @default.
- W2733875206 modified "2023-10-16" @default.
- W2733875206 title "Geometric Phase Effects in Nonadiabatic Dynamics near Conical Intersections" @default.
- W2733875206 cites W1498377335 @default.
- W2733875206 cites W1963924875 @default.
- W2733875206 cites W1966456856 @default.
- W2733875206 cites W1971381084 @default.
- W2733875206 cites W1977013930 @default.
- W2733875206 cites W1978221633 @default.
- W2733875206 cites W1987362154 @default.
- W2733875206 cites W1991256792 @default.
- W2733875206 cites W2001661873 @default.
- W2733875206 cites W2002624371 @default.
- W2733875206 cites W2007638331 @default.
- W2733875206 cites W2020290247 @default.
- W2733875206 cites W2022368043 @default.
- W2733875206 cites W2025504048 @default.
- W2733875206 cites W2040850843 @default.
- W2733875206 cites W2043453635 @default.
- W2733875206 cites W2046789550 @default.
- W2733875206 cites W2056176413 @default.
- W2733875206 cites W2058465572 @default.
- W2733875206 cites W2058802655 @default.
- W2733875206 cites W2068920655 @default.
- W2733875206 cites W2070795843 @default.
- W2733875206 cites W2070931774 @default.
- W2733875206 cites W2080542138 @default.
- W2733875206 cites W2083318404 @default.
- W2733875206 cites W2091826660 @default.
- W2733875206 cites W2097780038 @default.
- W2733875206 cites W2103318741 @default.
- W2733875206 cites W2103814944 @default.
- W2733875206 cites W2119700266 @default.
- W2733875206 cites W2134936666 @default.
- W2733875206 cites W2154324764 @default.
- W2733875206 cites W2155920106 @default.
- W2733875206 cites W2257292184 @default.
- W2733875206 cites W2318575192 @default.
- W2733875206 cites W2341975047 @default.
- W2733875206 cites W2353643386 @default.
- W2733875206 cites W2354136383 @default.
- W2733875206 cites W2415225937 @default.
- W2733875206 cites W2491861284 @default.
- W2733875206 cites W2549916728 @default.
- W2733875206 cites W2564143695 @default.
- W2733875206 cites W2566204919 @default.
- W2733875206 cites W2584469947 @default.
- W2733875206 cites W2595578026 @default.
- W2733875206 cites W2600273211 @default.
- W2733875206 cites W2620904093 @default.
- W2733875206 cites W3099596471 @default.
- W2733875206 doi "https://doi.org/10.1021/acs.accounts.7b00220" @default.
- W2733875206 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28665584" @default.
- W2733875206 hasPublicationYear "2017" @default.
- W2733875206 type Work @default.
- W2733875206 sameAs 2733875206 @default.
- W2733875206 citedByCount "77" @default.
- W2733875206 countsByYear W27338752062017 @default.
- W2733875206 countsByYear W27338752062018 @default.
- W2733875206 countsByYear W27338752062019 @default.
- W2733875206 countsByYear W27338752062020 @default.
- W2733875206 countsByYear W27338752062021 @default.
- W2733875206 countsByYear W27338752062022 @default.
- W2733875206 countsByYear W27338752062023 @default.
- W2733875206 crossrefType "journal-article" @default.
- W2733875206 hasAuthorship W2733875206A5052396114 @default.
- W2733875206 hasAuthorship W2733875206A5058051403 @default.
- W2733875206 hasAuthorship W2733875206A5080074500 @default.
- W2733875206 hasConcept C109663097 @default.
- W2733875206 hasConcept C111806078 @default.
- W2733875206 hasConcept C113603373 @default.
- W2733875206 hasConcept C114614502 @default.
- W2733875206 hasConcept C115852967 @default.
- W2733875206 hasConcept C121332964 @default.
- W2733875206 hasConcept C121864883 @default.
- W2733875206 hasConcept C124961601 @default.
- W2733875206 hasConcept C131584629 @default.
- W2733875206 hasConcept C14036430 @default.
- W2733875206 hasConcept C160172526 @default.
- W2733875206 hasConcept C181500209 @default.
- W2733875206 hasConcept C184720557 @default.
- W2733875206 hasConcept C186370098 @default.
- W2733875206 hasConcept C191897082 @default.
- W2733875206 hasConcept C192562407 @default.
- W2733875206 hasConcept C24857813 @default.
- W2733875206 hasConcept C2524010 @default.
- W2733875206 hasConcept C32909587 @default.
- W2733875206 hasConcept C33923547 @default.
- W2733875206 hasConcept C36556920 @default.
- W2733875206 hasConcept C62520636 @default.
- W2733875206 hasConcept C78458016 @default.
- W2733875206 hasConcept C84551667 @default.
- W2733875206 hasConcept C86025842 @default.