Matches in SemOpenAlex for { <https://semopenalex.org/work/W2733964592> ?p ?o ?g. }
- W2733964592 abstract "Deep neural networks have gained popularity inrecent years, obtaining outstanding results in a wide range ofapplications such as computer vision in both academia andmultiple industry areas. The progress made in recent years cannotbe understood without taking into account the technologicaladvancements seen in key domains such as High PerformanceComputing, more specifically in the Graphic Processing Unit(GPU) domain. These kind of deep neural networks need massiveamounts of data to effectively train the millions of parametersthey contain, and this training can take up to days or weeksdepending on the computer hardware we are using. In thiswork, we present how the training of a deep neural networkcan be parallelized on a distributed GPU cluster. The effect ofdistributing the training process is addressed from two differentpoints of view. First, the scalability of the task and its performancein the distributed setting are analyzed. Second, the impact ofdistributed training methods on the training times and finalaccuracy of the models is studied. We used TensorFlow on top ofthe GPU cluster of servers with 2 K80 GPU cards, at BarcelonaSupercomputing Center (BSC). The results show an improvementfor both focused areas. On one hand, the experiments showpromising results in order to train a neural network faster. The training time is decreased from 106 hours to 16 hoursin our experiments. On the other hand we can observe howincreasing the numbers of GPUs in one node rises the throughput, images per second, in a near-linear way. Morever an additionaldistributed speedup of 10.3 is achieved with 16 nodes taking asbaseline the speedup of one node." @default.
- W2733964592 created "2017-07-14" @default.
- W2733964592 creator A5000149079 @default.
- W2733964592 creator A5008356835 @default.
- W2733964592 creator A5051863471 @default.
- W2733964592 creator A5062691145 @default.
- W2733964592 creator A5070726752 @default.
- W2733964592 date "2017-05-01" @default.
- W2733964592 modified "2023-09-27" @default.
- W2733964592 title "Scaling a Convolutional Neural Network for Classification of Adjective Noun Pairs with TensorFlow on GPU Clusters" @default.
- W2733964592 cites W1598866093 @default.
- W2733964592 cites W1667652561 @default.
- W2733964592 cites W2003249666 @default.
- W2733964592 cites W2016053056 @default.
- W2733964592 cites W2075456404 @default.
- W2733964592 cites W2093862925 @default.
- W2733964592 cites W2097117768 @default.
- W2733964592 cites W2108598243 @default.
- W2733964592 cites W2112796928 @default.
- W2733964592 cites W2149933564 @default.
- W2733964592 cites W2155893237 @default.
- W2733964592 cites W2186615578 @default.
- W2733964592 cites W2194775991 @default.
- W2733964592 cites W2198403777 @default.
- W2733964592 cites W2254715784 @default.
- W2733964592 cites W2271840356 @default.
- W2733964592 cites W2336650964 @default.
- W2733964592 cites W2339343773 @default.
- W2733964592 cites W2553581924 @default.
- W2733964592 cites W2618530766 @default.
- W2733964592 cites W2953384591 @default.
- W2733964592 cites W2963410977 @default.
- W2733964592 cites W3105184045 @default.
- W2733964592 doi "https://doi.org/10.1109/ccgrid.2017.110" @default.
- W2733964592 hasPublicationYear "2017" @default.
- W2733964592 type Work @default.
- W2733964592 sameAs 2733964592 @default.
- W2733964592 citedByCount "8" @default.
- W2733964592 countsByYear W27339645922018 @default.
- W2733964592 countsByYear W27339645922019 @default.
- W2733964592 countsByYear W27339645922020 @default.
- W2733964592 countsByYear W27339645922022 @default.
- W2733964592 crossrefType "proceedings-article" @default.
- W2733964592 hasAuthorship W2733964592A5000149079 @default.
- W2733964592 hasAuthorship W2733964592A5008356835 @default.
- W2733964592 hasAuthorship W2733964592A5051863471 @default.
- W2733964592 hasAuthorship W2733964592A5062691145 @default.
- W2733964592 hasAuthorship W2733964592A5070726752 @default.
- W2733964592 hasBestOaLocation W27339645922 @default.
- W2733964592 hasConcept C108583219 @default.
- W2733964592 hasConcept C119857082 @default.
- W2733964592 hasConcept C127413603 @default.
- W2733964592 hasConcept C154945302 @default.
- W2733964592 hasConcept C162324750 @default.
- W2733964592 hasConcept C173608175 @default.
- W2733964592 hasConcept C187736073 @default.
- W2733964592 hasConcept C2778119891 @default.
- W2733964592 hasConcept C2779851693 @default.
- W2733964592 hasConcept C2780451532 @default.
- W2733964592 hasConcept C2781335571 @default.
- W2733964592 hasConcept C31258907 @default.
- W2733964592 hasConcept C41008148 @default.
- W2733964592 hasConcept C48044578 @default.
- W2733964592 hasConcept C50644808 @default.
- W2733964592 hasConcept C62611344 @default.
- W2733964592 hasConcept C66938386 @default.
- W2733964592 hasConcept C68339613 @default.
- W2733964592 hasConcept C77088390 @default.
- W2733964592 hasConcept C81363708 @default.
- W2733964592 hasConcept C93996380 @default.
- W2733964592 hasConceptScore W2733964592C108583219 @default.
- W2733964592 hasConceptScore W2733964592C119857082 @default.
- W2733964592 hasConceptScore W2733964592C127413603 @default.
- W2733964592 hasConceptScore W2733964592C154945302 @default.
- W2733964592 hasConceptScore W2733964592C162324750 @default.
- W2733964592 hasConceptScore W2733964592C173608175 @default.
- W2733964592 hasConceptScore W2733964592C187736073 @default.
- W2733964592 hasConceptScore W2733964592C2778119891 @default.
- W2733964592 hasConceptScore W2733964592C2779851693 @default.
- W2733964592 hasConceptScore W2733964592C2780451532 @default.
- W2733964592 hasConceptScore W2733964592C2781335571 @default.
- W2733964592 hasConceptScore W2733964592C31258907 @default.
- W2733964592 hasConceptScore W2733964592C41008148 @default.
- W2733964592 hasConceptScore W2733964592C48044578 @default.
- W2733964592 hasConceptScore W2733964592C50644808 @default.
- W2733964592 hasConceptScore W2733964592C62611344 @default.
- W2733964592 hasConceptScore W2733964592C66938386 @default.
- W2733964592 hasConceptScore W2733964592C68339613 @default.
- W2733964592 hasConceptScore W2733964592C77088390 @default.
- W2733964592 hasConceptScore W2733964592C81363708 @default.
- W2733964592 hasConceptScore W2733964592C93996380 @default.
- W2733964592 hasLocation W27339645921 @default.
- W2733964592 hasLocation W27339645922 @default.
- W2733964592 hasOpenAccess W2733964592 @default.
- W2733964592 hasPrimaryLocation W27339645921 @default.
- W2733964592 hasRelatedWork W1850429294 @default.
- W2733964592 hasRelatedWork W2032344319 @default.
- W2733964592 hasRelatedWork W2045400447 @default.
- W2733964592 hasRelatedWork W2064330900 @default.
- W2733964592 hasRelatedWork W2082176405 @default.