Matches in SemOpenAlex for { <https://semopenalex.org/work/W2734328295> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W2734328295 abstract "The aim of this dissertation was to find ways to improve learning and teaching at universities by analyzing whether the application of new technologies would facilitate the implementation of an effective teaching-learning format in which students write essays and are given feedback. More specifically, Latent Semantic Analysis (LSA) as a semantic technology that can be used for automatic essay scoring (AES) was applied for several purposes to facilitate essay writing in large university courses as part of an overarching strategy to improve learning and teaching at universities, that is, evidence-based teaching (EBT).In this dissertation, I will summarize and discuss findings regarding good learning and teaching (i.e., EBT) as well as why and how essay writing should be used in university courses, and regarding AES and LSA. Further, I will provide my own empirical findings on different ways to apply LSA in university courses: First, when students write essays at home, cheating must be expected, detected, and avoided. Thus, in Paper I, we analyzed whether LSA could be used to detect cheating in a large university course. Second, due to capacity constraints, instructors might need to focus their time and energy on students who are in need of special guidance. Thus, in Paper II, we investigated whether LSA could be used to identify poorly performing students. Third, before applying LSA for essay scoring, the effects of LSA-based evaluations should be explored. Thus, in Paper III, we analyzed the effects of LSA-based scores on students’ acceptance of automatic assessments and on learning-related characteristics. I will discuss these findings critically and conclude that LSA should not be used alone but is useful for assisting university instructors in different ways." @default.
- W2734328295 created "2017-07-21" @default.
- W2734328295 creator A5041336994 @default.
- W2734328295 date "2016-01-01" @default.
- W2734328295 modified "2023-09-25" @default.
- W2734328295 title "Improving Learning and Teaching at Universities: The Potential of Applying Automatic Essay Scoring with Latent Semantic Analysis" @default.
- W2734328295 doi "https://doi.org/10.11588/heidok.00021837" @default.
- W2734328295 hasPublicationYear "2016" @default.
- W2734328295 type Work @default.
- W2734328295 sameAs 2734328295 @default.
- W2734328295 citedByCount "1" @default.
- W2734328295 countsByYear W27343282952022 @default.
- W2734328295 crossrefType "dissertation" @default.
- W2734328295 hasAuthorship W2734328295A5041336994 @default.
- W2734328295 hasConcept C145420912 @default.
- W2734328295 hasConcept C154945302 @default.
- W2734328295 hasConcept C15744967 @default.
- W2734328295 hasConcept C170133592 @default.
- W2734328295 hasConcept C2778024590 @default.
- W2734328295 hasConcept C41008148 @default.
- W2734328295 hasConcept C77805123 @default.
- W2734328295 hasConceptScore W2734328295C145420912 @default.
- W2734328295 hasConceptScore W2734328295C154945302 @default.
- W2734328295 hasConceptScore W2734328295C15744967 @default.
- W2734328295 hasConceptScore W2734328295C170133592 @default.
- W2734328295 hasConceptScore W2734328295C2778024590 @default.
- W2734328295 hasConceptScore W2734328295C41008148 @default.
- W2734328295 hasConceptScore W2734328295C77805123 @default.
- W2734328295 hasLocation W27343282951 @default.
- W2734328295 hasOpenAccess W2734328295 @default.
- W2734328295 hasPrimaryLocation W27343282951 @default.
- W2734328295 hasRelatedWork W1599879760 @default.
- W2734328295 hasRelatedWork W2032011627 @default.
- W2734328295 hasRelatedWork W2071711320 @default.
- W2734328295 hasRelatedWork W211883709 @default.
- W2734328295 hasRelatedWork W2139610718 @default.
- W2734328295 hasRelatedWork W2159109539 @default.
- W2734328295 hasRelatedWork W2164537501 @default.
- W2734328295 hasRelatedWork W2563474510 @default.
- W2734328295 hasRelatedWork W2582389183 @default.
- W2734328295 hasRelatedWork W2593722756 @default.
- W2734328295 hasRelatedWork W2601282659 @default.
- W2734328295 hasRelatedWork W2604487603 @default.
- W2734328295 hasRelatedWork W2611720255 @default.
- W2734328295 hasRelatedWork W2727071947 @default.
- W2734328295 hasRelatedWork W2761718704 @default.
- W2734328295 hasRelatedWork W2800825683 @default.
- W2734328295 hasRelatedWork W2912968635 @default.
- W2734328295 hasRelatedWork W2996984171 @default.
- W2734328295 hasRelatedWork W3191808986 @default.
- W2734328295 hasRelatedWork W80649128 @default.
- W2734328295 isParatext "false" @default.
- W2734328295 isRetracted "false" @default.
- W2734328295 magId "2734328295" @default.
- W2734328295 workType "dissertation" @default.