Matches in SemOpenAlex for { <https://semopenalex.org/work/W2734421838> ?p ?o ?g. }
- W2734421838 endingPage "220" @default.
- W2734421838 startingPage "211" @default.
- W2734421838 abstract "Abstract Ferric sulfate-catalyzed esterification process for palm kernel oil (PKO), which had an initial acid value (AV) of 22 ± 0.1 mg KOH/g oil, was modeled using response surface methodology (RSM) and adaptive neuro fuzzy inference system (ANFIS). The process parameters investigated in the AV reduction of the oil were methanol-to-oil ratio (2:1–3:1), catalyst loading (6–10 w/v) and reaction time (15–25 min) using Box Behnken design of RSM. The developed ANFIS and RSM models were both subjected to various statistical evaluation and they both showed high degree of accuracy based on the high values of coefficient of determination ( R 2 ) of 0.9662 and 0.9039 for ANFIS and RSM, respectively and low values of mean absolute error of prediction (MAE) 0.0506 and 0.1506, and average absolute deviation (AAD) of 2.3665 and 7.1179 for ANFIS and RSM, respectively. To minimize the AV for the PKO, the process parameters investigated were optimized using RSM and ANFIS coupled with genetic algorithm (GA). Optimum values of methanol-to-oil ratio of 2.96:1, catalyst amount of 6 w/v and reaction time of 15 min with a corresponding AV of 1.05 mg KOH/g oil (95.2% AV reduction) were established using ANFIS-GA, while the values obtained using RSM were methanol-to-oil ratio of 2:1, catalyst amount of 6 w/v and reaction time of 25 min with a corresponding AV of 1.54 mg KOH/g oil (93.0% AV reduction). Based on the statistical indicators employed for this work, ANFIS was a better prediction tool than RSM while GA outperformed RSM in the optimization of the esterification process. Ferric sulfate proved to be a good catalyst for PKO esterification." @default.
- W2734421838 created "2017-07-21" @default.
- W2734421838 creator A5009015257 @default.
- W2734421838 creator A5021720042 @default.
- W2734421838 creator A5027195765 @default.
- W2734421838 creator A5030481754 @default.
- W2734421838 creator A5030503839 @default.
- W2734421838 creator A5040730860 @default.
- W2734421838 creator A5072183734 @default.
- W2734421838 creator A5061549746 @default.
- W2734421838 date "2017-10-01" @default.
- W2734421838 modified "2023-10-14" @default.
- W2734421838 title "Adaptive neuro-fuzzy inference system-genetic algorithm vs. response surface methodology: A case of optimization of ferric sulfate-catalyzed esterification of palm kernel oil" @default.
- W2734421838 cites W1531931873 @default.
- W2734421838 cites W1903621931 @default.
- W2734421838 cites W1965667065 @default.
- W2734421838 cites W1968098019 @default.
- W2734421838 cites W2005037532 @default.
- W2734421838 cites W2026199311 @default.
- W2734421838 cites W2026252830 @default.
- W2734421838 cites W2028257777 @default.
- W2734421838 cites W2028540208 @default.
- W2734421838 cites W2033301200 @default.
- W2734421838 cites W2042880492 @default.
- W2734421838 cites W2047274900 @default.
- W2734421838 cites W2047752159 @default.
- W2734421838 cites W2058071008 @default.
- W2734421838 cites W2066958464 @default.
- W2734421838 cites W2072318027 @default.
- W2734421838 cites W2073320336 @default.
- W2734421838 cites W2076019128 @default.
- W2734421838 cites W2079327677 @default.
- W2734421838 cites W2088801907 @default.
- W2734421838 cites W2104418358 @default.
- W2734421838 cites W2106527482 @default.
- W2734421838 cites W2167530013 @default.
- W2734421838 cites W2172716358 @default.
- W2734421838 cites W2199632431 @default.
- W2734421838 cites W2278872347 @default.
- W2734421838 cites W2296169141 @default.
- W2734421838 cites W2506935491 @default.
- W2734421838 cites W2518877425 @default.
- W2734421838 cites W2549685649 @default.
- W2734421838 doi "https://doi.org/10.1016/j.psep.2017.07.004" @default.
- W2734421838 hasPublicationYear "2017" @default.
- W2734421838 type Work @default.
- W2734421838 sameAs 2734421838 @default.
- W2734421838 citedByCount "22" @default.
- W2734421838 countsByYear W27344218382017 @default.
- W2734421838 countsByYear W27344218382018 @default.
- W2734421838 countsByYear W27344218382019 @default.
- W2734421838 countsByYear W27344218382020 @default.
- W2734421838 countsByYear W27344218382021 @default.
- W2734421838 countsByYear W27344218382022 @default.
- W2734421838 countsByYear W27344218382023 @default.
- W2734421838 crossrefType "journal-article" @default.
- W2734421838 hasAuthorship W2734421838A5009015257 @default.
- W2734421838 hasAuthorship W2734421838A5021720042 @default.
- W2734421838 hasAuthorship W2734421838A5027195765 @default.
- W2734421838 hasAuthorship W2734421838A5030481754 @default.
- W2734421838 hasAuthorship W2734421838A5030503839 @default.
- W2734421838 hasAuthorship W2734421838A5040730860 @default.
- W2734421838 hasAuthorship W2734421838A5061549746 @default.
- W2734421838 hasAuthorship W2734421838A5072183734 @default.
- W2734421838 hasConcept C119857082 @default.
- W2734421838 hasConcept C150077022 @default.
- W2734421838 hasConcept C154945302 @default.
- W2734421838 hasConcept C178790620 @default.
- W2734421838 hasConcept C185592680 @default.
- W2734421838 hasConcept C186108316 @default.
- W2734421838 hasConcept C195975749 @default.
- W2734421838 hasConcept C2777021569 @default.
- W2734421838 hasConcept C2778343803 @default.
- W2734421838 hasConcept C2778814971 @default.
- W2734421838 hasConcept C2780534640 @default.
- W2734421838 hasConcept C29470771 @default.
- W2734421838 hasConcept C2988237154 @default.
- W2734421838 hasConcept C31903555 @default.
- W2734421838 hasConcept C41008148 @default.
- W2734421838 hasConcept C43617362 @default.
- W2734421838 hasConcept C58166 @default.
- W2734421838 hasConcept C8880873 @default.
- W2734421838 hasConceptScore W2734421838C119857082 @default.
- W2734421838 hasConceptScore W2734421838C150077022 @default.
- W2734421838 hasConceptScore W2734421838C154945302 @default.
- W2734421838 hasConceptScore W2734421838C178790620 @default.
- W2734421838 hasConceptScore W2734421838C185592680 @default.
- W2734421838 hasConceptScore W2734421838C186108316 @default.
- W2734421838 hasConceptScore W2734421838C195975749 @default.
- W2734421838 hasConceptScore W2734421838C2777021569 @default.
- W2734421838 hasConceptScore W2734421838C2778343803 @default.
- W2734421838 hasConceptScore W2734421838C2778814971 @default.
- W2734421838 hasConceptScore W2734421838C2780534640 @default.
- W2734421838 hasConceptScore W2734421838C29470771 @default.
- W2734421838 hasConceptScore W2734421838C2988237154 @default.
- W2734421838 hasConceptScore W2734421838C31903555 @default.
- W2734421838 hasConceptScore W2734421838C41008148 @default.
- W2734421838 hasConceptScore W2734421838C43617362 @default.