Matches in SemOpenAlex for { <https://semopenalex.org/work/W2734476764> ?p ?o ?g. }
- W2734476764 abstract "Abstract Hashing has been attracting much attention in computer vision recently, since it can provide efficient similarity comparison in massive multimedia databases with fast query speed and low storage cost. Since the distance metric is an explicit description of similarity, in this paper, a novel hashing method is proposed for image retrieval, dubbed Isometric Hashing (IH). IH aims to minimize the difference between the distance in input space and the distance of the corresponding binary codes. To tackle the discrete optimization in a computationally tractable manner, IH adopts some mathematical tricks to transform the original problem into a multi-objective optimization problem. The usage of linear-projection-based hash functions enables efficient generating hash codes for unseen data points. Furthermore, utilizing different distance metrics could produce corresponding hashing algorithms, thus IH can be seen as a framework for developing new hashing methods. Extensive experiments performed on four benchmark datasets validate that IH can achieve comparable to or even better results than some state-of-the-art hashing methods." @default.
- W2734476764 created "2017-07-21" @default.
- W2734476764 creator A5006557413 @default.
- W2734476764 creator A5009944817 @default.
- W2734476764 creator A5021610428 @default.
- W2734476764 date "2017-11-01" @default.
- W2734476764 modified "2023-10-03" @default.
- W2734476764 title "Isometric hashing for image retrieval" @default.
- W2734476764 cites W1502916507 @default.
- W2734476764 cites W1566135517 @default.
- W2734476764 cites W1633071488 @default.
- W2734476764 cites W1973538555 @default.
- W2734476764 cites W1974647172 @default.
- W2734476764 cites W1977007469 @default.
- W2734476764 cites W1984316102 @default.
- W2734476764 cites W1992371516 @default.
- W2734476764 cites W1995918092 @default.
- W2734476764 cites W2001141328 @default.
- W2734476764 cites W2012592962 @default.
- W2734476764 cites W2031407623 @default.
- W2734476764 cites W2044195942 @default.
- W2734476764 cites W2053186076 @default.
- W2734476764 cites W2057069782 @default.
- W2734476764 cites W2084363474 @default.
- W2734476764 cites W2089407614 @default.
- W2734476764 cites W2091828704 @default.
- W2734476764 cites W2100659887 @default.
- W2734476764 cites W2105474305 @default.
- W2734476764 cites W2106619583 @default.
- W2734476764 cites W2118527389 @default.
- W2734476764 cites W2125003829 @default.
- W2734476764 cites W2125378448 @default.
- W2734476764 cites W2139739811 @default.
- W2734476764 cites W2142881874 @default.
- W2734476764 cites W2148394752 @default.
- W2734476764 cites W2149544245 @default.
- W2734476764 cites W2156287497 @default.
- W2734476764 cites W2164338181 @default.
- W2734476764 cites W2168955003 @default.
- W2734476764 cites W2201936386 @default.
- W2734476764 cites W2214876188 @default.
- W2734476764 cites W2251864938 @default.
- W2734476764 cites W2264763800 @default.
- W2734476764 cites W2293597654 @default.
- W2734476764 cites W2294155285 @default.
- W2734476764 cites W2463369284 @default.
- W2734476764 cites W2510911086 @default.
- W2734476764 cites W2610492717 @default.
- W2734476764 cites W2610617435 @default.
- W2734476764 cites W2913932916 @default.
- W2734476764 cites W2951581059 @default.
- W2734476764 cites W3106512200 @default.
- W2734476764 cites W3118608800 @default.
- W2734476764 cites W59975075 @default.
- W2734476764 doi "https://doi.org/10.1016/j.image.2017.07.002" @default.
- W2734476764 hasPublicationYear "2017" @default.
- W2734476764 type Work @default.
- W2734476764 sameAs 2734476764 @default.
- W2734476764 citedByCount "5" @default.
- W2734476764 countsByYear W27344767642017 @default.
- W2734476764 countsByYear W27344767642018 @default.
- W2734476764 countsByYear W27344767642019 @default.
- W2734476764 crossrefType "journal-article" @default.
- W2734476764 hasAuthorship W2734476764A5006557413 @default.
- W2734476764 hasAuthorship W2734476764A5009944817 @default.
- W2734476764 hasAuthorship W2734476764A5021610428 @default.
- W2734476764 hasConcept C103278499 @default.
- W2734476764 hasConcept C11413529 @default.
- W2734476764 hasConcept C115961682 @default.
- W2734476764 hasConcept C116058348 @default.
- W2734476764 hasConcept C116738811 @default.
- W2734476764 hasConcept C122907437 @default.
- W2734476764 hasConcept C124101348 @default.
- W2734476764 hasConcept C13280743 @default.
- W2734476764 hasConcept C133667856 @default.
- W2734476764 hasConcept C138111711 @default.
- W2734476764 hasConcept C154945302 @default.
- W2734476764 hasConcept C162324750 @default.
- W2734476764 hasConcept C1667742 @default.
- W2734476764 hasConcept C176217482 @default.
- W2734476764 hasConcept C185798385 @default.
- W2734476764 hasConcept C187062812 @default.
- W2734476764 hasConcept C205649164 @default.
- W2734476764 hasConcept C21547014 @default.
- W2734476764 hasConcept C33923547 @default.
- W2734476764 hasConcept C36375716 @default.
- W2734476764 hasConcept C38652104 @default.
- W2734476764 hasConcept C41008148 @default.
- W2734476764 hasConcept C48372109 @default.
- W2734476764 hasConcept C56856351 @default.
- W2734476764 hasConcept C63435697 @default.
- W2734476764 hasConcept C67388219 @default.
- W2734476764 hasConcept C74270461 @default.
- W2734476764 hasConcept C80444323 @default.
- W2734476764 hasConcept C94375191 @default.
- W2734476764 hasConcept C99138194 @default.
- W2734476764 hasConceptScore W2734476764C103278499 @default.
- W2734476764 hasConceptScore W2734476764C11413529 @default.
- W2734476764 hasConceptScore W2734476764C115961682 @default.
- W2734476764 hasConceptScore W2734476764C116058348 @default.