Matches in SemOpenAlex for { <https://semopenalex.org/work/W2734535856> ?p ?o ?g. }
- W2734535856 abstract "Abstract In this paper, a spiking neural network–based architecture for the prediction of wind farm energy production is proposed. The model is also able to evaluate the wake effects due to interactions between the elements of a wind farm on the energy production of the whole farm. This method has been applied to a large wind power plant, composed of 28 turbines and 3 anemometric towers, located in the rural area of Vizzini's municipality in province of Catania, Italy, that is characterised by a complex orography and an extension of 30 k m 2 . For the implementation of this architecture it was used the “NeuCube” simulator. The results show that the presented method can be successfully applied for predictions of wind energy generation in real wind farm also in presence of faults." @default.
- W2734535856 created "2017-07-21" @default.
- W2734535856 creator A5003020869 @default.
- W2734535856 creator A5048176614 @default.
- W2734535856 creator A5054631049 @default.
- W2734535856 creator A5072988587 @default.
- W2734535856 date "2017-07-10" @default.
- W2734535856 modified "2023-10-16" @default.
- W2734535856 title "A new design methodology to predict wind farm energy production by means of a spiking neural network–based system" @default.
- W2734535856 cites W101771737 @default.
- W2734535856 cites W1496160187 @default.
- W2734535856 cites W1878915617 @default.
- W2734535856 cites W1985085737 @default.
- W2734535856 cites W1991043735 @default.
- W2734535856 cites W1995088783 @default.
- W2734535856 cites W2015968260 @default.
- W2734535856 cites W2017532337 @default.
- W2734535856 cites W2018573276 @default.
- W2734535856 cites W2019598563 @default.
- W2734535856 cites W2039573396 @default.
- W2734535856 cites W2054659065 @default.
- W2734535856 cites W2067718885 @default.
- W2734535856 cites W2090433565 @default.
- W2734535856 cites W2091644467 @default.
- W2734535856 cites W2102387656 @default.
- W2734535856 cites W2112090702 @default.
- W2734535856 cites W2116540796 @default.
- W2734535856 cites W2118020555 @default.
- W2734535856 cites W2128432504 @default.
- W2734535856 cites W2134608015 @default.
- W2734535856 cites W2147101007 @default.
- W2734535856 cites W2157239334 @default.
- W2734535856 cites W2162743401 @default.
- W2734535856 cites W2162921217 @default.
- W2734535856 cites W2215569344 @default.
- W2734535856 cites W2477599206 @default.
- W2734535856 cites W2488105199 @default.
- W2734535856 cites W2492074435 @default.
- W2734535856 cites W2515269908 @default.
- W2734535856 cites W4212863985 @default.
- W2734535856 doi "https://doi.org/10.1002/jnm.2267" @default.
- W2734535856 hasPublicationYear "2017" @default.
- W2734535856 type Work @default.
- W2734535856 sameAs 2734535856 @default.
- W2734535856 citedByCount "22" @default.
- W2734535856 countsByYear W27345358562017 @default.
- W2734535856 countsByYear W27345358562018 @default.
- W2734535856 countsByYear W27345358562019 @default.
- W2734535856 countsByYear W27345358562020 @default.
- W2734535856 countsByYear W27345358562021 @default.
- W2734535856 countsByYear W27345358562022 @default.
- W2734535856 countsByYear W27345358562023 @default.
- W2734535856 crossrefType "journal-article" @default.
- W2734535856 hasAuthorship W2734535856A5003020869 @default.
- W2734535856 hasAuthorship W2734535856A5048176614 @default.
- W2734535856 hasAuthorship W2734535856A5054631049 @default.
- W2734535856 hasAuthorship W2734535856A5072988587 @default.
- W2734535856 hasBestOaLocation W27345358561 @default.
- W2734535856 hasConcept C105795698 @default.
- W2734535856 hasConcept C107054158 @default.
- W2734535856 hasConcept C119599485 @default.
- W2734535856 hasConcept C121332964 @default.
- W2734535856 hasConcept C127413603 @default.
- W2734535856 hasConcept C139719470 @default.
- W2734535856 hasConcept C146978453 @default.
- W2734535856 hasConcept C153294291 @default.
- W2734535856 hasConcept C154945302 @default.
- W2734535856 hasConcept C161067210 @default.
- W2734535856 hasConcept C162324750 @default.
- W2734535856 hasConcept C163258240 @default.
- W2734535856 hasConcept C186370098 @default.
- W2734535856 hasConcept C194507410 @default.
- W2734535856 hasConcept C199104240 @default.
- W2734535856 hasConcept C205649164 @default.
- W2734535856 hasConcept C2778348673 @default.
- W2734535856 hasConcept C33923547 @default.
- W2734535856 hasConcept C39432304 @default.
- W2734535856 hasConcept C41008148 @default.
- W2734535856 hasConcept C423512 @default.
- W2734535856 hasConcept C44154836 @default.
- W2734535856 hasConcept C48939323 @default.
- W2734535856 hasConcept C50644808 @default.
- W2734535856 hasConcept C62520636 @default.
- W2734535856 hasConcept C78600449 @default.
- W2734535856 hasConcept C88463610 @default.
- W2734535856 hasConceptScore W2734535856C105795698 @default.
- W2734535856 hasConceptScore W2734535856C107054158 @default.
- W2734535856 hasConceptScore W2734535856C119599485 @default.
- W2734535856 hasConceptScore W2734535856C121332964 @default.
- W2734535856 hasConceptScore W2734535856C127413603 @default.
- W2734535856 hasConceptScore W2734535856C139719470 @default.
- W2734535856 hasConceptScore W2734535856C146978453 @default.
- W2734535856 hasConceptScore W2734535856C153294291 @default.
- W2734535856 hasConceptScore W2734535856C154945302 @default.
- W2734535856 hasConceptScore W2734535856C161067210 @default.
- W2734535856 hasConceptScore W2734535856C162324750 @default.
- W2734535856 hasConceptScore W2734535856C163258240 @default.
- W2734535856 hasConceptScore W2734535856C186370098 @default.
- W2734535856 hasConceptScore W2734535856C194507410 @default.
- W2734535856 hasConceptScore W2734535856C199104240 @default.