Matches in SemOpenAlex for { <https://semopenalex.org/work/W2734608416> ?p ?o ?g. }
- W2734608416 endingPage "i48" @default.
- W2734608416 startingPage "i37" @default.
- W2734608416 abstract "Text mining has become an important tool for biomedical research. The most fundamental text-mining task is the recognition of biomedical named entities (NER), such as genes, chemicals and diseases. Current NER methods rely on pre-defined features which try to capture the specific surface properties of entity types, properties of the typical local context, background knowledge, and linguistic information. State-of-the-art tools are entity-specific, as dictionaries and empirically optimal feature sets differ between entity types, which makes their development costly. Furthermore, features are often optimized for a specific gold standard corpus, which makes extrapolation of quality measures difficult.We show that a completely generic method based on deep learning and statistical word embeddings [called long short-term memory network-conditional random field (LSTM-CRF)] outperforms state-of-the-art entity-specific NER tools, and often by a large margin. To this end, we compared the performance of LSTM-CRF on 33 data sets covering five different entity classes with that of best-of-class NER tools and an entity-agnostic CRF implementation. On average, F1-score of LSTM-CRF is 5% above that of the baselines, mostly due to a sharp increase in recall.The source code for LSTM-CRF is available at https://github.com/glample/tagger and the links to the corpora are available at https://corposaurus.github.io/corpora/ .habibima@informatik.hu-berlin.de." @default.
- W2734608416 created "2017-07-21" @default.
- W2734608416 creator A5024881923 @default.
- W2734608416 creator A5041680406 @default.
- W2734608416 creator A5055236937 @default.
- W2734608416 creator A5076906690 @default.
- W2734608416 creator A5086385635 @default.
- W2734608416 date "2017-07-12" @default.
- W2734608416 modified "2023-10-17" @default.
- W2734608416 title "Deep learning with word embeddings improves biomedical named entity recognition" @default.
- W2734608416 cites W1480376833 @default.
- W2734608416 cites W1850865022 @default.
- W2734608416 cites W1941318214 @default.
- W2734608416 cites W2005058680 @default.
- W2734608416 cites W2019772739 @default.
- W2734608416 cites W2041073071 @default.
- W2734608416 cites W2045789762 @default.
- W2734608416 cites W2064675550 @default.
- W2734608416 cites W2065963191 @default.
- W2734608416 cites W2071879021 @default.
- W2734608416 cites W2079735306 @default.
- W2734608416 cites W2080848531 @default.
- W2734608416 cites W2094591616 @default.
- W2734608416 cites W2095444228 @default.
- W2734608416 cites W2097678794 @default.
- W2734608416 cites W2100627415 @default.
- W2734608416 cites W2101553882 @default.
- W2734608416 cites W2107005506 @default.
- W2734608416 cites W2109555487 @default.
- W2734608416 cites W2121244856 @default.
- W2734608416 cites W2124767801 @default.
- W2734608416 cites W2125838338 @default.
- W2734608416 cites W2132079307 @default.
- W2734608416 cites W2142016317 @default.
- W2734608416 cites W2145870108 @default.
- W2734608416 cites W2149369282 @default.
- W2734608416 cites W2151025545 @default.
- W2734608416 cites W2154142897 @default.
- W2734608416 cites W2162442688 @default.
- W2734608416 cites W2166468803 @default.
- W2734608416 cites W2168041406 @default.
- W2734608416 cites W2169099542 @default.
- W2734608416 cites W2169491861 @default.
- W2734608416 cites W2169918010 @default.
- W2734608416 cites W2169974160 @default.
- W2734608416 cites W2174828870 @default.
- W2734608416 cites W2192572088 @default.
- W2734608416 cites W2229453122 @default.
- W2734608416 cites W2346452181 @default.
- W2734608416 cites W2414378847 @default.
- W2734608416 cites W2540052259 @default.
- W2734608416 cites W4233456913 @default.
- W2734608416 cites W4254522893 @default.
- W2734608416 doi "https://doi.org/10.1093/bioinformatics/btx228" @default.
- W2734608416 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5870729" @default.
- W2734608416 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28881963" @default.
- W2734608416 hasPublicationYear "2017" @default.
- W2734608416 type Work @default.
- W2734608416 sameAs 2734608416 @default.
- W2734608416 citedByCount "433" @default.
- W2734608416 countsByYear W27346084162016 @default.
- W2734608416 countsByYear W27346084162017 @default.
- W2734608416 countsByYear W27346084162018 @default.
- W2734608416 countsByYear W27346084162019 @default.
- W2734608416 countsByYear W27346084162020 @default.
- W2734608416 countsByYear W27346084162021 @default.
- W2734608416 countsByYear W27346084162022 @default.
- W2734608416 countsByYear W27346084162023 @default.
- W2734608416 crossrefType "journal-article" @default.
- W2734608416 hasAuthorship W2734608416A5024881923 @default.
- W2734608416 hasAuthorship W2734608416A5041680406 @default.
- W2734608416 hasAuthorship W2734608416A5055236937 @default.
- W2734608416 hasAuthorship W2734608416A5076906690 @default.
- W2734608416 hasAuthorship W2734608416A5086385635 @default.
- W2734608416 hasBestOaLocation W27346084161 @default.
- W2734608416 hasConcept C108583219 @default.
- W2734608416 hasConcept C111919701 @default.
- W2734608416 hasConcept C119857082 @default.
- W2734608416 hasConcept C138885662 @default.
- W2734608416 hasConcept C148524875 @default.
- W2734608416 hasConcept C151730666 @default.
- W2734608416 hasConcept C152565575 @default.
- W2734608416 hasConcept C154945302 @default.
- W2734608416 hasConcept C162324750 @default.
- W2734608416 hasConcept C177264268 @default.
- W2734608416 hasConcept C187736073 @default.
- W2734608416 hasConcept C199360897 @default.
- W2734608416 hasConcept C202444582 @default.
- W2734608416 hasConcept C204321447 @default.
- W2734608416 hasConcept C23123220 @default.
- W2734608416 hasConcept C2776401178 @default.
- W2734608416 hasConcept C2776760102 @default.
- W2734608416 hasConcept C2779135771 @default.
- W2734608416 hasConcept C2779343474 @default.
- W2734608416 hasConcept C2780451532 @default.
- W2734608416 hasConcept C33923547 @default.
- W2734608416 hasConcept C41008148 @default.
- W2734608416 hasConcept C41895202 @default.