Matches in SemOpenAlex for { <https://semopenalex.org/work/W2734679871> ?p ?o ?g. }
- W2734679871 abstract "Image features can be learned and subsequently used for reconstruction and classification tasks in the fields of machine learning and computer vision. In this work, we propose image reconstruction using Convolutional Sparse Coding (CSC) on IBM's TrueNorth Neuromorphic computing system. CSC explicitly models local interactions through the convolution operations. Convolutional kernels define a dictionary and Sparse Feature Maps (SFMs) that are generated through a training process. The images are reconstructed with convolutional operations on SFMs and respective kernels. In this paper, we report on experimental results demonstrating promising sparse reconstructions on the IBM Neuromorphic TrueNorth hardware for two different benchmarks: MNIST and CIFAR-10. It is noted that this is the first ever important step towards convolutional sparse coding on neuromorphic hardware." @default.
- W2734679871 created "2017-07-21" @default.
- W2734679871 creator A5009879963 @default.
- W2734679871 creator A5021250695 @default.
- W2734679871 creator A5036789951 @default.
- W2734679871 creator A5068423553 @default.
- W2734679871 creator A5083608547 @default.
- W2734679871 date "2017-05-01" @default.
- W2734679871 modified "2023-09-22" @default.
- W2734679871 title "Convolutional sparse coding on neurosynaptic cognitive system" @default.
- W2734679871 cites W2060956313 @default.
- W2734679871 cites W2065261386 @default.
- W2734679871 cites W2072357061 @default.
- W2734679871 cites W2094756095 @default.
- W2734679871 cites W2108665656 @default.
- W2734679871 cites W2112796928 @default.
- W2734679871 cites W2113606819 @default.
- W2734679871 cites W2117259536 @default.
- W2734679871 cites W2134905716 @default.
- W2734679871 cites W2138913040 @default.
- W2734679871 cites W2143055991 @default.
- W2734679871 cites W2155377787 @default.
- W2734679871 cites W2163605009 @default.
- W2734679871 cites W2556506018 @default.
- W2734679871 cites W2919115771 @default.
- W2734679871 cites W3123607434 @default.
- W2734679871 cites W2029507661 @default.
- W2734679871 cites W2046103274 @default.
- W2734679871 doi "https://doi.org/10.1109/ijcnn.2017.7966310" @default.
- W2734679871 hasPublicationYear "2017" @default.
- W2734679871 type Work @default.
- W2734679871 sameAs 2734679871 @default.
- W2734679871 citedByCount "3" @default.
- W2734679871 countsByYear W27346798712018 @default.
- W2734679871 countsByYear W27346798712021 @default.
- W2734679871 crossrefType "proceedings-article" @default.
- W2734679871 hasAuthorship W2734679871A5009879963 @default.
- W2734679871 hasAuthorship W2734679871A5021250695 @default.
- W2734679871 hasAuthorship W2734679871A5036789951 @default.
- W2734679871 hasAuthorship W2734679871A5068423553 @default.
- W2734679871 hasAuthorship W2734679871A5083608547 @default.
- W2734679871 hasConcept C105795698 @default.
- W2734679871 hasConcept C108583219 @default.
- W2734679871 hasConcept C11413529 @default.
- W2734679871 hasConcept C151927369 @default.
- W2734679871 hasConcept C153180895 @default.
- W2734679871 hasConcept C154945302 @default.
- W2734679871 hasConcept C157899210 @default.
- W2734679871 hasConcept C171250308 @default.
- W2734679871 hasConcept C173608175 @default.
- W2734679871 hasConcept C179518139 @default.
- W2734679871 hasConcept C190502265 @default.
- W2734679871 hasConcept C192562407 @default.
- W2734679871 hasConcept C31972630 @default.
- W2734679871 hasConcept C33923547 @default.
- W2734679871 hasConcept C41008148 @default.
- W2734679871 hasConcept C45347329 @default.
- W2734679871 hasConcept C50644808 @default.
- W2734679871 hasConcept C57273362 @default.
- W2734679871 hasConcept C68339613 @default.
- W2734679871 hasConcept C70388272 @default.
- W2734679871 hasConcept C77637269 @default.
- W2734679871 hasConcept C81363708 @default.
- W2734679871 hasConceptScore W2734679871C105795698 @default.
- W2734679871 hasConceptScore W2734679871C108583219 @default.
- W2734679871 hasConceptScore W2734679871C11413529 @default.
- W2734679871 hasConceptScore W2734679871C151927369 @default.
- W2734679871 hasConceptScore W2734679871C153180895 @default.
- W2734679871 hasConceptScore W2734679871C154945302 @default.
- W2734679871 hasConceptScore W2734679871C157899210 @default.
- W2734679871 hasConceptScore W2734679871C171250308 @default.
- W2734679871 hasConceptScore W2734679871C173608175 @default.
- W2734679871 hasConceptScore W2734679871C179518139 @default.
- W2734679871 hasConceptScore W2734679871C190502265 @default.
- W2734679871 hasConceptScore W2734679871C192562407 @default.
- W2734679871 hasConceptScore W2734679871C31972630 @default.
- W2734679871 hasConceptScore W2734679871C33923547 @default.
- W2734679871 hasConceptScore W2734679871C41008148 @default.
- W2734679871 hasConceptScore W2734679871C45347329 @default.
- W2734679871 hasConceptScore W2734679871C50644808 @default.
- W2734679871 hasConceptScore W2734679871C57273362 @default.
- W2734679871 hasConceptScore W2734679871C68339613 @default.
- W2734679871 hasConceptScore W2734679871C70388272 @default.
- W2734679871 hasConceptScore W2734679871C77637269 @default.
- W2734679871 hasConceptScore W2734679871C81363708 @default.
- W2734679871 hasLocation W27346798711 @default.
- W2734679871 hasOpenAccess W2734679871 @default.
- W2734679871 hasPrimaryLocation W27346798711 @default.
- W2734679871 hasRelatedWork W148877464 @default.
- W2734679871 hasRelatedWork W1649885719 @default.
- W2734679871 hasRelatedWork W2037496786 @default.
- W2734679871 hasRelatedWork W2185954144 @default.
- W2734679871 hasRelatedWork W2190635018 @default.
- W2734679871 hasRelatedWork W2289772031 @default.
- W2734679871 hasRelatedWork W2321627895 @default.
- W2734679871 hasRelatedWork W2576269910 @default.
- W2734679871 hasRelatedWork W2599408268 @default.
- W2734679871 hasRelatedWork W2766191760 @default.
- W2734679871 hasRelatedWork W2766412668 @default.
- W2734679871 hasRelatedWork W2766722543 @default.