Matches in SemOpenAlex for { <https://semopenalex.org/work/W2734739919> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2734739919 abstract "With the increasing demand for examining and extracting patterns from massive amounts of data, it is critical to be able to train large models to fulfill the needs that recent advances in the machine learning area create. L-BFGS (Limited-memory Broyden Fletcher Goldfarb Shanno) is a numeric optimization method that has been effectively used for parameter estimation to train various machine learning models. As the number of parameters increase, implementing this algorithm on one single machine can be insufficient, due to the limited number of computational resources available. In this paper, we present a parallelized implementation of the L-BFGS algorithm on a distributed system which includes a cluster of commodity computing machines. We use open source HPCC Systems (High-Performance Computing Cluster) platform as the underlying distributed system to implement the L-BFGS algorithm. We initially provide an overview of the HPCC Systems framework and how it allows for the parallel and distributed computations important for Big Data analytics and, subsequently, we explain our implementation of the L-BFGS algorithm on this platform. Our experimental results show that our large-scale implementation of the L-BFGS algorithm can easily scale from training models with millions of parameters to models with billions of parameters by simply increasing the number of commodity computational nodes." @default.
- W2734739919 created "2017-07-21" @default.
- W2734739919 creator A5004387914 @default.
- W2734739919 creator A5026550848 @default.
- W2734739919 creator A5073869382 @default.
- W2734739919 creator A5089170562 @default.
- W2734739919 date "2017-07-17" @default.
- W2734739919 modified "2023-10-14" @default.
- W2734739919 title "Large-scale distributed L-BFGS" @default.
- W2734739919 cites W1569098853 @default.
- W2734739919 cites W1988849934 @default.
- W2734739919 cites W2005688170 @default.
- W2734739919 cites W2044490410 @default.
- W2734739919 cites W2118023920 @default.
- W2734739919 cites W2119400430 @default.
- W2734739919 cites W2142031898 @default.
- W2734739919 cites W2142623206 @default.
- W2734739919 cites W2157355837 @default.
- W2734739919 cites W2173213060 @default.
- W2734739919 cites W2568803167 @default.
- W2734739919 cites W2963220077 @default.
- W2734739919 cites W2963390885 @default.
- W2734739919 doi "https://doi.org/10.1186/s40537-017-0084-5" @default.
- W2734739919 hasPublicationYear "2017" @default.
- W2734739919 type Work @default.
- W2734739919 sameAs 2734739919 @default.
- W2734739919 citedByCount "21" @default.
- W2734739919 countsByYear W27347399192018 @default.
- W2734739919 countsByYear W27347399192019 @default.
- W2734739919 countsByYear W27347399192020 @default.
- W2734739919 countsByYear W27347399192021 @default.
- W2734739919 countsByYear W27347399192022 @default.
- W2734739919 countsByYear W27347399192023 @default.
- W2734739919 crossrefType "journal-article" @default.
- W2734739919 hasAuthorship W2734739919A5004387914 @default.
- W2734739919 hasAuthorship W2734739919A5026550848 @default.
- W2734739919 hasAuthorship W2734739919A5073869382 @default.
- W2734739919 hasAuthorship W2734739919A5089170562 @default.
- W2734739919 hasBestOaLocation W27347399191 @default.
- W2734739919 hasConcept C132721684 @default.
- W2734739919 hasConcept C151319957 @default.
- W2734739919 hasConcept C173608175 @default.
- W2734739919 hasConcept C205649164 @default.
- W2734739919 hasConcept C2778755073 @default.
- W2734739919 hasConcept C31258907 @default.
- W2734739919 hasConcept C41008148 @default.
- W2734739919 hasConcept C459310 @default.
- W2734739919 hasConcept C58640448 @default.
- W2734739919 hasConcept C68597687 @default.
- W2734739919 hasConceptScore W2734739919C132721684 @default.
- W2734739919 hasConceptScore W2734739919C151319957 @default.
- W2734739919 hasConceptScore W2734739919C173608175 @default.
- W2734739919 hasConceptScore W2734739919C205649164 @default.
- W2734739919 hasConceptScore W2734739919C2778755073 @default.
- W2734739919 hasConceptScore W2734739919C31258907 @default.
- W2734739919 hasConceptScore W2734739919C41008148 @default.
- W2734739919 hasConceptScore W2734739919C459310 @default.
- W2734739919 hasConceptScore W2734739919C58640448 @default.
- W2734739919 hasConceptScore W2734739919C68597687 @default.
- W2734739919 hasIssue "1" @default.
- W2734739919 hasLocation W27347399191 @default.
- W2734739919 hasLocation W27347399192 @default.
- W2734739919 hasOpenAccess W2734739919 @default.
- W2734739919 hasPrimaryLocation W27347399191 @default.
- W2734739919 hasRelatedWork W1509211761 @default.
- W2734739919 hasRelatedWork W1558545464 @default.
- W2734739919 hasRelatedWork W1984303163 @default.
- W2734739919 hasRelatedWork W2117014006 @default.
- W2734739919 hasRelatedWork W2358725432 @default.
- W2734739919 hasRelatedWork W2372170743 @default.
- W2734739919 hasRelatedWork W2965967938 @default.
- W2734739919 hasRelatedWork W3047022145 @default.
- W2734739919 hasRelatedWork W4233815414 @default.
- W2734739919 hasRelatedWork W99847340 @default.
- W2734739919 hasVolume "4" @default.
- W2734739919 isParatext "false" @default.
- W2734739919 isRetracted "false" @default.
- W2734739919 magId "2734739919" @default.
- W2734739919 workType "article" @default.