Matches in SemOpenAlex for { <https://semopenalex.org/work/W2734852028> ?p ?o ?g. }
- W2734852028 endingPage "254" @default.
- W2734852028 startingPage "254" @default.
- W2734852028 abstract "Improvements in the management of pine plantations result in multiple industrial and environmental benefits. Remote sensing techniques can dramatically increase the efficiency of plantation management by reducing or replacing time-consuming field sampling. We tested the utility and accuracy of combining field and airborne lidar data with Random Forest, a supervised machine learning algorithm, to estimate stem total and assortment (commercial and pulpwood) volumes in an industrial Pinus taeda L. forest plantation in southern Brazil. Random Forest was populated using field and lidar-derived forest metrics from 50 sample plots with trees ranging from three to nine years old. We found that a model defined as a function of only two metrics (height of the top of the canopy and the skewness of the vertical distribution of lidar points) has a very strong and unbiased predictive power. We found that predictions of total, commercial, and pulp volume, respectively, showed an adjusted R2 equal to 0.98, 0.98 and 0.96, with unbiased predictions of −0.17%, −0.12% and −0.23%, and Root Mean Square Error (RMSE) values of 7.83%, 7.71% and 8.63%. Our methodology makes use of commercially available airborne lidar and widely used mathematical tools to provide solutions for increasing the industry efficiency in monitoring and managing wood volume." @default.
- W2734852028 created "2017-07-21" @default.
- W2734852028 creator A5005679529 @default.
- W2734852028 creator A5008748101 @default.
- W2734852028 creator A5026745688 @default.
- W2734852028 creator A5032994985 @default.
- W2734852028 creator A5038007613 @default.
- W2734852028 creator A5042922619 @default.
- W2734852028 creator A5044680131 @default.
- W2734852028 creator A5069907356 @default.
- W2734852028 creator A5070888429 @default.
- W2734852028 creator A5077699288 @default.
- W2734852028 date "2017-07-17" @default.
- W2734852028 modified "2023-10-01" @default.
- W2734852028 title "Predicting Stem Total and Assortment Volumes in an Industrial Pinus taeda L. Forest Plantation Using Airborne Laser Scanning Data and Random Forest" @default.
- W2734852028 cites W1452467712 @default.
- W2734852028 cites W1904864110 @default.
- W2734852028 cites W1964789567 @default.
- W2734852028 cites W1965597456 @default.
- W2734852028 cites W1967586169 @default.
- W2734852028 cites W1969866530 @default.
- W2734852028 cites W1990763871 @default.
- W2734852028 cites W1993151586 @default.
- W2734852028 cites W1996263757 @default.
- W2734852028 cites W2000345291 @default.
- W2734852028 cites W2001614386 @default.
- W2734852028 cites W2009214675 @default.
- W2734852028 cites W2012002695 @default.
- W2734852028 cites W2012211735 @default.
- W2734852028 cites W2019126302 @default.
- W2734852028 cites W2031419936 @default.
- W2734852028 cites W2045013307 @default.
- W2734852028 cites W2045626198 @default.
- W2734852028 cites W2048950501 @default.
- W2734852028 cites W2058731966 @default.
- W2734852028 cites W2081620141 @default.
- W2734852028 cites W2088385352 @default.
- W2734852028 cites W2089806346 @default.
- W2734852028 cites W2106662933 @default.
- W2734852028 cites W2107914530 @default.
- W2734852028 cites W2123574709 @default.
- W2734852028 cites W2132108972 @default.
- W2734852028 cites W2139053550 @default.
- W2734852028 cites W2147243569 @default.
- W2734852028 cites W2151549592 @default.
- W2734852028 cites W2152515840 @default.
- W2734852028 cites W2160486837 @default.
- W2734852028 cites W2166307050 @default.
- W2734852028 cites W2208808953 @default.
- W2734852028 cites W2311795227 @default.
- W2734852028 cites W2324440886 @default.
- W2734852028 cites W2473991816 @default.
- W2734852028 cites W2516127106 @default.
- W2734852028 cites W2517145564 @default.
- W2734852028 cites W2561205583 @default.
- W2734852028 cites W2621420385 @default.
- W2734852028 cites W2911964244 @default.
- W2734852028 cites W2913324749 @default.
- W2734852028 cites W299709162 @default.
- W2734852028 doi "https://doi.org/10.3390/f8070254" @default.
- W2734852028 hasPublicationYear "2017" @default.
- W2734852028 type Work @default.
- W2734852028 sameAs 2734852028 @default.
- W2734852028 citedByCount "39" @default.
- W2734852028 countsByYear W27348520282017 @default.
- W2734852028 countsByYear W27348520282018 @default.
- W2734852028 countsByYear W27348520282019 @default.
- W2734852028 countsByYear W27348520282020 @default.
- W2734852028 countsByYear W27348520282021 @default.
- W2734852028 countsByYear W27348520282022 @default.
- W2734852028 countsByYear W27348520282023 @default.
- W2734852028 crossrefType "journal-article" @default.
- W2734852028 hasAuthorship W2734852028A5005679529 @default.
- W2734852028 hasAuthorship W2734852028A5008748101 @default.
- W2734852028 hasAuthorship W2734852028A5026745688 @default.
- W2734852028 hasAuthorship W2734852028A5032994985 @default.
- W2734852028 hasAuthorship W2734852028A5038007613 @default.
- W2734852028 hasAuthorship W2734852028A5042922619 @default.
- W2734852028 hasAuthorship W2734852028A5044680131 @default.
- W2734852028 hasAuthorship W2734852028A5069907356 @default.
- W2734852028 hasAuthorship W2734852028A5070888429 @default.
- W2734852028 hasAuthorship W2734852028A5077699288 @default.
- W2734852028 hasBestOaLocation W27348520281 @default.
- W2734852028 hasConcept C101000010 @default.
- W2734852028 hasConcept C105795698 @default.
- W2734852028 hasConcept C106131492 @default.
- W2734852028 hasConcept C115051666 @default.
- W2734852028 hasConcept C119857082 @default.
- W2734852028 hasConcept C121412344 @default.
- W2734852028 hasConcept C122342681 @default.
- W2734852028 hasConcept C139945424 @default.
- W2734852028 hasConcept C140779682 @default.
- W2734852028 hasConcept C147103442 @default.
- W2734852028 hasConcept C166957645 @default.
- W2734852028 hasConcept C169258074 @default.
- W2734852028 hasConcept C205649164 @default.
- W2734852028 hasConcept C28631016 @default.
- W2734852028 hasConcept C31972630 @default.