Matches in SemOpenAlex for { <https://semopenalex.org/work/W2734854926> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2734854926 abstract "This paper presents recent results obtained by the Lattice Discrete Particle Model (LDPM) for the simulation of concrete and fiber reinforced concrete behavior. LDPM is a meso-scale model which has been recently formulated at Rensselaer Polytechnic Institute and extensively validated against experimental data. LDPM can accurately predict several phenomena characterizing concrete behavior, including failure under uniaxial, biaxial, and triaxial compression; material compaction under hydrostatic compression; and tensile fracturing. 1 THE LATTICE DISCRETE PARTICLEMODEL Since the mid-1980s, many meso-scale models for concrete have appeared in the literature. The main advantage of these models over classic constitutive models for concrete is their ability to simulate material heterogeneity and its effect on damage evolution and fracture. Noteworthy examples of mesoscale models are the ones published in Roelfstra et al. (1985), Wittmann et al. (1988), Bažant et al. (1990), Schlangen & Van Mier (1992), Carol et al. (2001), Lilliu & Van Mier (2003), Cusatis et al. (2003a), Cusatis et al. (2003b), Cusatis et al. (2006a), Cusatis & Cedolin (2006b), Yip et al. (2006). This paper presents and discusses recent results obtained at Rensselaer Polytechnic Institute by the Lattice Discrete Particle Model (LDPM). LDPM simulates concrete mesostructure by taking into account only the coarse aggregate pieces, typically with characteristic size greater than 5 mm. The mesostructure is constructed through the following steps. 1) The coarse aggregate pieces, whose shapes are assumed to be spherical, are introduced into the concrete volume by a try-and-reject random procedure. 2) Zero-radius aggregate pieces (nodes) are randomly distributed over the external surfaces. 3) A three-dimensional domain tessellation, based on the Delaunay tetrahedralization of the generated aggregate centers, creates a system of cells interacting through triangular facets, which can be represented in a two-dimensional sketch by straight line segments (Fig. 1). A vectorial constitutive law governing the behavior of the model is imposed at the centroid of the projection of each single facet (contact point) onto a plane orthogonal to the straight line connecting the particle centers (edges of the tetrahedralization). The projections are used inFigure 1: a) Meso-structure tessellation. b) Threedimensional discrete particle. c) Definition of nodal degrees of freedom and contact facets in two-dimension. stead of the facets themselves to ensure that the shear interaction between adjacent particles does not depend on the shear orientation. The straight lines connecting the contact points with the particle centers define the lattice system. Rigid body kinematics describes the displacement field along the lattice struts and the displacement jump, uC , at the contact point. The strain vector is defined as the displacement jump at the contact point divided by the inter-particle distance, L. The components of the strain vector in a local system of reference, characterized by the unit vectors n, l, and m, are the normal and shear strains: The Lattice Discrete Particle Model (LDPM) for the Simulation of Uniaxial and Multiaxial Behavior of Concrete: Recent Results. G. Cusatis & A. Mencarelli Rensselaer Polytechnic Institute, Troy (NY), USA D. Pelessone ES3, Solana Beach (CA), USA J.T. Baylot Engineer Research and Development Center, Vicksburg (MS), USA Fracture Mechanics of Concrete and Concrete Structures Recent Advances in Fracture Mechanics of Concrete B. H. Oh, et al.(eds) c 2010 Korea Concrete Institute, Seoul, ISBN 978-89-5708-180-8" @default.
- W2734854926 created "2017-07-21" @default.
- W2734854926 creator A5000144100 @default.
- W2734854926 creator A5024267376 @default.
- W2734854926 creator A5063359315 @default.
- W2734854926 creator A5086921693 @default.
- W2734854926 date "2010-01-01" @default.
- W2734854926 modified "2023-09-24" @default.
- W2734854926 title "The Lattice Discrete Particle Model (LDPM) for the simulation of Uniaxial and Multiaxial Behavior of Concrete: Recent Results" @default.
- W2734854926 cites W120071191 @default.
- W2734854926 cites W1966348197 @default.
- W2734854926 cites W1992487075 @default.
- W2734854926 cites W2008922327 @default.
- W2734854926 cites W2051638419 @default.
- W2734854926 cites W2071366435 @default.
- W2734854926 cites W2075739118 @default.
- W2734854926 cites W2080498959 @default.
- W2734854926 cites W2087537543 @default.
- W2734854926 cites W2088979760 @default.
- W2734854926 cites W2113103369 @default.
- W2734854926 cites W2155137029 @default.
- W2734854926 cites W2334952369 @default.
- W2734854926 cites W2615379224 @default.
- W2734854926 cites W568068781 @default.
- W2734854926 hasPublicationYear "2010" @default.
- W2734854926 type Work @default.
- W2734854926 sameAs 2734854926 @default.
- W2734854926 citedByCount "0" @default.
- W2734854926 crossrefType "journal-article" @default.
- W2734854926 hasAuthorship W2734854926A5000144100 @default.
- W2734854926 hasAuthorship W2734854926A5024267376 @default.
- W2734854926 hasAuthorship W2734854926A5063359315 @default.
- W2734854926 hasAuthorship W2734854926A5086921693 @default.
- W2734854926 hasConcept C121332964 @default.
- W2734854926 hasConcept C121864883 @default.
- W2734854926 hasConcept C134853933 @default.
- W2734854926 hasConcept C159985019 @default.
- W2734854926 hasConcept C192562407 @default.
- W2734854926 hasConcept C24890656 @default.
- W2734854926 hasConcept C2781204021 @default.
- W2734854926 hasConcept C4679612 @default.
- W2734854926 hasConcept C62520636 @default.
- W2734854926 hasConceptScore W2734854926C121332964 @default.
- W2734854926 hasConceptScore W2734854926C121864883 @default.
- W2734854926 hasConceptScore W2734854926C134853933 @default.
- W2734854926 hasConceptScore W2734854926C159985019 @default.
- W2734854926 hasConceptScore W2734854926C192562407 @default.
- W2734854926 hasConceptScore W2734854926C24890656 @default.
- W2734854926 hasConceptScore W2734854926C2781204021 @default.
- W2734854926 hasConceptScore W2734854926C4679612 @default.
- W2734854926 hasConceptScore W2734854926C62520636 @default.
- W2734854926 hasLocation W27348549261 @default.
- W2734854926 hasOpenAccess W2734854926 @default.
- W2734854926 hasPrimaryLocation W27348549261 @default.
- W2734854926 hasRelatedWork W1820367075 @default.
- W2734854926 hasRelatedWork W1868104759 @default.
- W2734854926 hasRelatedWork W1973997826 @default.
- W2734854926 hasRelatedWork W2009866282 @default.
- W2734854926 hasRelatedWork W202263830 @default.
- W2734854926 hasRelatedWork W2030669099 @default.
- W2734854926 hasRelatedWork W2044886909 @default.
- W2734854926 hasRelatedWork W2063519810 @default.
- W2734854926 hasRelatedWork W2151109082 @default.
- W2734854926 hasRelatedWork W2188886137 @default.
- W2734854926 hasRelatedWork W2885658778 @default.
- W2734854926 hasRelatedWork W2953002986 @default.
- W2734854926 hasRelatedWork W2972683660 @default.
- W2734854926 hasRelatedWork W2998769609 @default.
- W2734854926 hasRelatedWork W3123770710 @default.
- W2734854926 hasRelatedWork W375919346 @default.
- W2734854926 hasRelatedWork W54376541 @default.
- W2734854926 hasRelatedWork W5498523 @default.
- W2734854926 hasRelatedWork W625333113 @default.
- W2734854926 hasRelatedWork W1553662581 @default.
- W2734854926 isParatext "false" @default.
- W2734854926 isRetracted "false" @default.
- W2734854926 magId "2734854926" @default.
- W2734854926 workType "article" @default.