Matches in SemOpenAlex for { <https://semopenalex.org/work/W2735099020> ?p ?o ?g. }
- W2735099020 abstract "Abstract Models for predicting phenotypic outcomes from genotypes have important applications to understanding genomic function and improving human health. Here, we develop a machine-learning system to predict cell type-specific epigenetic and transcriptional profiles in large mammalian genomes from DNA sequence alone. Using convolutional neural networks, this system identifies promoters and distal regulatory elements and synthesizes their content to make effective gene expression predictions. We show that model predictions for the influence of genomic variants on gene expression align well to causal variants underlying eQTLs in human populations and can be useful for generating mechanistic hypotheses to enable fine mapping of disease loci." @default.
- W2735099020 created "2017-07-21" @default.
- W2735099020 creator A5014783439 @default.
- W2735099020 creator A5024961870 @default.
- W2735099020 date "2017-07-10" @default.
- W2735099020 modified "2023-09-23" @default.
- W2735099020 title "Sequential regulatory activity prediction across chromosomes with convolutional neural networks" @default.
- W2735099020 cites W1019830208 @default.
- W2735099020 cites W1483147211 @default.
- W2735099020 cites W1605145036 @default.
- W2735099020 cites W1636205509 @default.
- W2735099020 cites W1787224781 @default.
- W2735099020 cites W1796801877 @default.
- W2735099020 cites W1814420991 @default.
- W2735099020 cites W1844405070 @default.
- W2735099020 cites W1847732278 @default.
- W2735099020 cites W1900337607 @default.
- W2735099020 cites W1986223165 @default.
- W2735099020 cites W1987839415 @default.
- W2735099020 cites W1988581590 @default.
- W2735099020 cites W1993616000 @default.
- W2735099020 cites W2001294950 @default.
- W2735099020 cites W2018604728 @default.
- W2735099020 cites W2032200433 @default.
- W2735099020 cites W2042086471 @default.
- W2735099020 cites W2044286001 @default.
- W2735099020 cites W2044826047 @default.
- W2735099020 cites W2056198580 @default.
- W2735099020 cites W2076154138 @default.
- W2735099020 cites W2078059415 @default.
- W2735099020 cites W2079471807 @default.
- W2735099020 cites W2083073732 @default.
- W2735099020 cites W2099698839 @default.
- W2735099020 cites W2103777723 @default.
- W2735099020 cites W2104549677 @default.
- W2735099020 cites W2112673809 @default.
- W2735099020 cites W2115779804 @default.
- W2735099020 cites W2134868027 @default.
- W2735099020 cites W2135403800 @default.
- W2735099020 cites W2138845271 @default.
- W2735099020 cites W2153860431 @default.
- W2735099020 cites W2167876561 @default.
- W2735099020 cites W2170551349 @default.
- W2735099020 cites W2171808845 @default.
- W2735099020 cites W2194775991 @default.
- W2735099020 cites W2198606573 @default.
- W2735099020 cites W2212528563 @default.
- W2735099020 cites W2259938310 @default.
- W2735099020 cites W2295297857 @default.
- W2735099020 cites W2344561059 @default.
- W2735099020 cites W2345512687 @default.
- W2735099020 cites W2553838260 @default.
- W2735099020 cites W2556513628 @default.
- W2735099020 cites W2557530941 @default.
- W2735099020 cites W2559028527 @default.
- W2735099020 cites W2562443513 @default.
- W2735099020 cites W2593095770 @default.
- W2735099020 cites W2598189082 @default.
- W2735099020 cites W2602141149 @default.
- W2735099020 cites W2626606138 @default.
- W2735099020 cites W2761275051 @default.
- W2735099020 cites W2766549714 @default.
- W2735099020 cites W2951385940 @default.
- W2735099020 cites W2963446712 @default.
- W2735099020 doi "https://doi.org/10.1101/161851" @default.
- W2735099020 hasPublicationYear "2017" @default.
- W2735099020 type Work @default.
- W2735099020 sameAs 2735099020 @default.
- W2735099020 citedByCount "11" @default.
- W2735099020 countsByYear W27350990202017 @default.
- W2735099020 countsByYear W27350990202018 @default.
- W2735099020 countsByYear W27350990202020 @default.
- W2735099020 countsByYear W27350990202021 @default.
- W2735099020 crossrefType "posted-content" @default.
- W2735099020 hasAuthorship W2735099020A5014783439 @default.
- W2735099020 hasAuthorship W2735099020A5024961870 @default.
- W2735099020 hasBestOaLocation W27350990201 @default.
- W2735099020 hasConcept C104317684 @default.
- W2735099020 hasConcept C106208931 @default.
- W2735099020 hasConcept C127716648 @default.
- W2735099020 hasConcept C135763542 @default.
- W2735099020 hasConcept C14036430 @default.
- W2735099020 hasConcept C141231307 @default.
- W2735099020 hasConcept C150194340 @default.
- W2735099020 hasConcept C153209595 @default.
- W2735099020 hasConcept C154945302 @default.
- W2735099020 hasConcept C161078062 @default.
- W2735099020 hasConcept C165864922 @default.
- W2735099020 hasConcept C168393362 @default.
- W2735099020 hasConcept C189206191 @default.
- W2735099020 hasConcept C197077220 @default.
- W2735099020 hasConcept C21592294 @default.
- W2735099020 hasConcept C41008148 @default.
- W2735099020 hasConcept C41091548 @default.
- W2735099020 hasConcept C54355233 @default.
- W2735099020 hasConcept C64554109 @default.
- W2735099020 hasConcept C67339327 @default.
- W2735099020 hasConcept C70721500 @default.
- W2735099020 hasConcept C81363708 @default.
- W2735099020 hasConcept C86803240 @default.