Matches in SemOpenAlex for { <https://semopenalex.org/work/W2735115738> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2735115738 endingPage "123" @default.
- W2735115738 startingPage "80" @default.
- W2735115738 abstract "Linguists engaged in language documentation and sociolinguistics face similar problems when it comes to efficiently processing large corpora of recorded speech. Though field recordings can be collected efficiently, it may take months or years to process the audio for certain types of Besides transcription, phonetic analysis often requires the time-consuming alignment of transcription to audio. The expense related to this process may limit both the questions researchers can explore and the amount of data they can analyze. Recent advances in speech recognition technology have led to the development of tools to automate time alignment of transcriptions to audio (Evanini, Isard, and Liberman 2009, Goldman 2011, Kisler, Schiel, and Sloetjes 2012, Reddy and Stanford 2015, Rosenfelder 2013). Such automation promises to expedite the process of preparing data for acoustic Unfortunately, the benefits of auto-alignment have generally been available only to researchers studying majority languages like English, for which large corpora exist and for which acoustic models have been created by large-scale research projects or corporate entities. Prosodylab-Aligner (Gorman, Howell, and Wagner 2011), developed at McGill University and available free of charge, was developed specifically to facilitate automated alignment and segmentation for less-studied languages. It allows researchers to train their own acoustic models using the same audio files for which alignments will be created. Those models can then be used to create Praat Textgrids aligned to those recordings, with boundaries marked at both the word and segment level. Our study tests the use of Prosodylab-Aligner on Tongan field recordings. The results show that automated alignment of recordings of an understudied language is feasible for linguists without programming experience and less time-consuming than traditional manual alignments. For the benefit of others who may wish to use Prosodylab-Aligner for their own research data, the paper also reviews the software, and outlines the steps required to install software components, prepare data files, train acoustic models, and create time-aligned Textgrids. It also provides tips and solutions to problems we encountered along the way. In addition, since field recordings often contain more background noise than the kinds of laboratory recordings Prosodylab-Aligner was designed to use, the paper also presents an analysis (using PraatR (Albin 2014)) of the relative costs and benefits of removing background noise for both training and alignment purposes. References Albin, Aaron L. 2014. PraatR: An architecture for controlling the phonetics software “Praat” with the R programming language. The Journal of the Acoustical Society of America 135 (4):2198-2199. Evanini, Keelan, Stephen Isard, and Mark Liberman. 2009. Automatic formant extraction for sociolinguistic analysis of large corpora. INTERSPEECH. Goldman, Jean-Philippe. 2011. Esayalign: an automatic phonetic alignment tool under Praat. Interspeech-2011:3233-3236. Gorman, Kyle, Jonathan Howell, and Michael Wagner. 2011. Prosodylab-Aligner: A Tool for Alignment of Laboratroy Speech. Canadian Acoustics 39 (3):192-193. Kisler, Thomas, Florian Schiel, and Han Sloetjes. 2012. Signal processing via web services: the use case WebMAUS. Digital Humanities Conference 2012. Reddy, Sravana, and James Stanford. 2015. Toward completely automated vowel extraction: Introducing DARLA. Linguistics Vanguard. Rosenfelder, Ingrid. 2013. Forced Alignment & Vowel Extraction (FAVE): An online suite for automatic vowel analysis. University of Pennsylvania Linguistics Lab, Last Modified December 8, 2013, accessed November 26. 2015. http://fave.ling.upenn.edu/index.html." @default.
- W2735115738 created "2017-07-21" @default.
- W2735115738 creator A5029490203 @default.
- W2735115738 creator A5055867803 @default.
- W2735115738 creator A5090776141 @default.
- W2735115738 date "2018-03-01" @default.
- W2735115738 modified "2023-09-24" @default.
- W2735115738 title "Forced Alignment for Understudied Language Varieties: Testing Prosodylab-Aligner with Tongan Data." @default.
- W2735115738 hasPublicationYear "2018" @default.
- W2735115738 type Work @default.
- W2735115738 sameAs 2735115738 @default.
- W2735115738 citedByCount "2" @default.
- W2735115738 countsByYear W27351157382018 @default.
- W2735115738 countsByYear W27351157382019 @default.
- W2735115738 crossrefType "journal-article" @default.
- W2735115738 hasAuthorship W2735115738A5029490203 @default.
- W2735115738 hasAuthorship W2735115738A5055867803 @default.
- W2735115738 hasAuthorship W2735115738A5090776141 @default.
- W2735115738 hasConcept C138885662 @default.
- W2735115738 hasConcept C154945302 @default.
- W2735115738 hasConcept C179926584 @default.
- W2735115738 hasConcept C199360897 @default.
- W2735115738 hasConcept C202444582 @default.
- W2735115738 hasConcept C204321447 @default.
- W2735115738 hasConcept C2777853878 @default.
- W2735115738 hasConcept C28490314 @default.
- W2735115738 hasConcept C33923547 @default.
- W2735115738 hasConcept C41008148 @default.
- W2735115738 hasConcept C41895202 @default.
- W2735115738 hasConcept C56666940 @default.
- W2735115738 hasConcept C89600930 @default.
- W2735115738 hasConcept C9652623 @default.
- W2735115738 hasConcept C98045186 @default.
- W2735115738 hasConceptScore W2735115738C138885662 @default.
- W2735115738 hasConceptScore W2735115738C154945302 @default.
- W2735115738 hasConceptScore W2735115738C179926584 @default.
- W2735115738 hasConceptScore W2735115738C199360897 @default.
- W2735115738 hasConceptScore W2735115738C202444582 @default.
- W2735115738 hasConceptScore W2735115738C204321447 @default.
- W2735115738 hasConceptScore W2735115738C2777853878 @default.
- W2735115738 hasConceptScore W2735115738C28490314 @default.
- W2735115738 hasConceptScore W2735115738C33923547 @default.
- W2735115738 hasConceptScore W2735115738C41008148 @default.
- W2735115738 hasConceptScore W2735115738C41895202 @default.
- W2735115738 hasConceptScore W2735115738C56666940 @default.
- W2735115738 hasConceptScore W2735115738C89600930 @default.
- W2735115738 hasConceptScore W2735115738C9652623 @default.
- W2735115738 hasConceptScore W2735115738C98045186 @default.
- W2735115738 hasLocation W27351157381 @default.
- W2735115738 hasOpenAccess W2735115738 @default.
- W2735115738 hasPrimaryLocation W27351157381 @default.
- W2735115738 hasRelatedWork W1578856370 @default.
- W2735115738 hasRelatedWork W1984376719 @default.
- W2735115738 hasRelatedWork W2114499288 @default.
- W2735115738 hasRelatedWork W2147292124 @default.
- W2735115738 hasRelatedWork W2251189042 @default.
- W2735115738 hasRelatedWork W2273309525 @default.
- W2735115738 hasRelatedWork W2571791129 @default.
- W2735115738 hasRelatedWork W2617980507 @default.
- W2735115738 hasRelatedWork W268739756 @default.
- W2735115738 hasRelatedWork W2800766718 @default.
- W2735115738 hasRelatedWork W2901891354 @default.
- W2735115738 hasRelatedWork W2937197076 @default.
- W2735115738 hasRelatedWork W2997173210 @default.
- W2735115738 hasRelatedWork W3010812523 @default.
- W2735115738 hasRelatedWork W3030437843 @default.
- W2735115738 hasRelatedWork W3104146447 @default.
- W2735115738 hasRelatedWork W3160275121 @default.
- W2735115738 hasRelatedWork W3176944389 @default.
- W2735115738 hasRelatedWork W3198120589 @default.
- W2735115738 hasRelatedWork W337731787 @default.
- W2735115738 hasVolume "12" @default.
- W2735115738 isParatext "false" @default.
- W2735115738 isRetracted "false" @default.
- W2735115738 magId "2735115738" @default.
- W2735115738 workType "article" @default.