Matches in SemOpenAlex for { <https://semopenalex.org/work/W2735194059> ?p ?o ?g. }
- W2735194059 endingPage "i216" @default.
- W2735194059 startingPage "i208" @default.
- W2735194059 abstract "Systems immunology leverages recent technological advancements that enable broad profiling of the immune system to better understand the response to infection and vaccination, as well as the dysregulation that occurs in disease. An increasingly common approach to gain insights from these large-scale profiling experiments involves the application of statistical learning methods to predict disease states or the immune response to perturbations. However, the goal of many systems studies is not to maximize accuracy, but rather to gain biological insights. The predictors identified using current approaches can be biologically uninterpretable or present only one of many equally predictive models, leading to a narrow understanding of the underlying biology. Here we show that incorporating prior biological knowledge within a logistic modeling framework by using network-level constraints on transcriptional profiling data significantly improves interpretability. Moreover, incorporating different types of biological knowledge produces models that highlight distinct aspects of the underlying biology, while maintaining predictive accuracy. We propose a new framework, Logistic Multiple Network-constrained Regression (LogMiNeR), and apply it to understand the mechanisms underlying differential responses to influenza vaccination. Although standard logistic regression approaches were predictive, they were minimally interpretable. Incorporating prior knowledge using LogMiNeR led to models that were equally predictive yet highly interpretable. In this context, B cell-specific genes and mTOR signaling were associated with an effective vaccination response in young adults. Overall, our results demonstrate a new paradigm for analyzing high-dimensional immune profiling data in which multiple networks encoding prior knowledge are incorporated to improve model interpretability. The R source code described in this article is publicly available at https://bitbucket.org/kleinstein/logminer. Supplementary data are available at Bioinformatics online." @default.
- W2735194059 created "2017-07-21" @default.
- W2735194059 creator A5003486745 @default.
- W2735194059 creator A5005632982 @default.
- W2735194059 creator A5021647734 @default.
- W2735194059 creator A5022291258 @default.
- W2735194059 creator A5027143883 @default.
- W2735194059 creator A5062976194 @default.
- W2735194059 creator A5066562919 @default.
- W2735194059 creator A5066629466 @default.
- W2735194059 creator A5085380922 @default.
- W2735194059 date "2017-07-12" @default.
- W2735194059 modified "2023-10-15" @default.
- W2735194059 title "Multiple network-constrained regressions expand insights into influenza vaccination responses" @default.
- W2735194059 cites W1560176252 @default.
- W2735194059 cites W1855413151 @default.
- W2735194059 cites W1906461790 @default.
- W2735194059 cites W1969218538 @default.
- W2735194059 cites W1989277387 @default.
- W2735194059 cites W1994698160 @default.
- W2735194059 cites W1998203489 @default.
- W2735194059 cites W2022126078 @default.
- W2735194059 cites W2037665605 @default.
- W2735194059 cites W2059980695 @default.
- W2735194059 cites W2070050178 @default.
- W2735194059 cites W2095522046 @default.
- W2735194059 cites W2097360283 @default.
- W2735194059 cites W2098740506 @default.
- W2735194059 cites W2099615297 @default.
- W2735194059 cites W2100239923 @default.
- W2735194059 cites W2100625056 @default.
- W2735194059 cites W2103017472 @default.
- W2735194059 cites W2105359173 @default.
- W2735194059 cites W2111413836 @default.
- W2735194059 cites W2113613985 @default.
- W2735194059 cites W2114391324 @default.
- W2735194059 cites W2116063398 @default.
- W2735194059 cites W2118306668 @default.
- W2735194059 cites W2121604817 @default.
- W2735194059 cites W2122825543 @default.
- W2735194059 cites W2127449417 @default.
- W2735194059 cites W2130410032 @default.
- W2735194059 cites W2133730856 @default.
- W2735194059 cites W2135891958 @default.
- W2735194059 cites W2137632714 @default.
- W2735194059 cites W2143033696 @default.
- W2735194059 cites W2144642115 @default.
- W2735194059 cites W2144902263 @default.
- W2735194059 cites W2146512944 @default.
- W2735194059 cites W2149010238 @default.
- W2735194059 cites W2150258208 @default.
- W2735194059 cites W2154947819 @default.
- W2735194059 cites W2159482845 @default.
- W2735194059 cites W2159675211 @default.
- W2735194059 cites W2160395304 @default.
- W2735194059 cites W2163382783 @default.
- W2735194059 cites W4237335579 @default.
- W2735194059 cites W4238854650 @default.
- W2735194059 cites W4294216483 @default.
- W2735194059 cites W4294541781 @default.
- W2735194059 doi "https://doi.org/10.1093/bioinformatics/btx260" @default.
- W2735194059 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5870750" @default.
- W2735194059 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28881994" @default.
- W2735194059 hasPublicationYear "2017" @default.
- W2735194059 type Work @default.
- W2735194059 sameAs 2735194059 @default.
- W2735194059 citedByCount "8" @default.
- W2735194059 countsByYear W27351940592018 @default.
- W2735194059 countsByYear W27351940592019 @default.
- W2735194059 countsByYear W27351940592020 @default.
- W2735194059 countsByYear W27351940592021 @default.
- W2735194059 crossrefType "journal-article" @default.
- W2735194059 hasAuthorship W2735194059A5003486745 @default.
- W2735194059 hasAuthorship W2735194059A5005632982 @default.
- W2735194059 hasAuthorship W2735194059A5021647734 @default.
- W2735194059 hasAuthorship W2735194059A5022291258 @default.
- W2735194059 hasAuthorship W2735194059A5027143883 @default.
- W2735194059 hasAuthorship W2735194059A5062976194 @default.
- W2735194059 hasAuthorship W2735194059A5066562919 @default.
- W2735194059 hasAuthorship W2735194059A5066629466 @default.
- W2735194059 hasAuthorship W2735194059A5085380922 @default.
- W2735194059 hasBestOaLocation W27351940591 @default.
- W2735194059 hasConcept C104317684 @default.
- W2735194059 hasConcept C111919701 @default.
- W2735194059 hasConcept C119857082 @default.
- W2735194059 hasConcept C150194340 @default.
- W2735194059 hasConcept C151730666 @default.
- W2735194059 hasConcept C151956035 @default.
- W2735194059 hasConcept C152662350 @default.
- W2735194059 hasConcept C154945302 @default.
- W2735194059 hasConcept C187191949 @default.
- W2735194059 hasConcept C203014093 @default.
- W2735194059 hasConcept C22070199 @default.
- W2735194059 hasConcept C2779343474 @default.
- W2735194059 hasConcept C2781067378 @default.
- W2735194059 hasConcept C28225019 @default.
- W2735194059 hasConcept C41008148 @default.
- W2735194059 hasConcept C55493867 @default.