Matches in SemOpenAlex for { <https://semopenalex.org/work/W2735241462> ?p ?o ?g. }
Showing items 1 to 47 of
47
with 100 items per page.
- W2735241462 abstract "Adjoint algorithms, and in particular those obtained through the adjoint mode of Automatic Differentiation (AD), are probably the most efficient way to obtain the gradient of a numerical simulation. This however needs to use the ow of data of the original simulation in reverse order, at a cost that increases with the length of the simulation. AD research looks for strategies to reduce this cost, taking advantage of the structure of the given program. One such frequent structure is fixed-point iterations, which occur e.g. in steady-state simulations, but not only. It is common wisdom that the first iterations of a fixed-point search operate on a meaningless state vector, and that reversing the corresponding data-flow may be suboptimal. An adapted adjoint strategy for this iterative process should consider only the last or the few last iterations. At least two authors, B. Christianson and A. Griewank, have studied mathematically fixedpoint iterations with the goal of defining an efficient adjoint. In this paper, we describe and contrast these two strategies with the objective of implementing the best suited one into the AD tool that we are developing. We select a representative application to test the chosen strategy, to propose a set of user directives to trigger it, and to discuss the implementation implications in our tool." @default.
- W2735241462 created "2017-07-21" @default.
- W2735241462 creator A5005339776 @default.
- W2735241462 creator A5034294283 @default.
- W2735241462 creator A5076832442 @default.
- W2735241462 date "2014-07-20" @default.
- W2735241462 modified "2023-10-05" @default.
- W2735241462 title "Adjoints of Fixed-Point Iterations" @default.
- W2735241462 hasPublicationYear "2014" @default.
- W2735241462 type Work @default.
- W2735241462 sameAs 2735241462 @default.
- W2735241462 citedByCount "0" @default.
- W2735241462 crossrefType "proceedings-article" @default.
- W2735241462 hasAuthorship W2735241462A5005339776 @default.
- W2735241462 hasAuthorship W2735241462A5034294283 @default.
- W2735241462 hasAuthorship W2735241462A5076832442 @default.
- W2735241462 hasBestOaLocation W27352414621 @default.
- W2735241462 hasConcept C134306372 @default.
- W2735241462 hasConcept C2524010 @default.
- W2735241462 hasConcept C28719098 @default.
- W2735241462 hasConcept C33923547 @default.
- W2735241462 hasConcept C41008148 @default.
- W2735241462 hasConcept C61445026 @default.
- W2735241462 hasConceptScore W2735241462C134306372 @default.
- W2735241462 hasConceptScore W2735241462C2524010 @default.
- W2735241462 hasConceptScore W2735241462C28719098 @default.
- W2735241462 hasConceptScore W2735241462C33923547 @default.
- W2735241462 hasConceptScore W2735241462C41008148 @default.
- W2735241462 hasConceptScore W2735241462C61445026 @default.
- W2735241462 hasLocation W27352414621 @default.
- W2735241462 hasLocation W27352414622 @default.
- W2735241462 hasOpenAccess W2735241462 @default.
- W2735241462 hasPrimaryLocation W27352414621 @default.
- W2735241462 hasRelatedWork W1596801655 @default.
- W2735241462 hasRelatedWork W2130043461 @default.
- W2735241462 hasRelatedWork W2350741829 @default.
- W2735241462 hasRelatedWork W2358668433 @default.
- W2735241462 hasRelatedWork W2376932109 @default.
- W2735241462 hasRelatedWork W2382290278 @default.
- W2735241462 hasRelatedWork W2390279801 @default.
- W2735241462 hasRelatedWork W2748952813 @default.
- W2735241462 hasRelatedWork W2899084033 @default.
- W2735241462 hasRelatedWork W2530322880 @default.
- W2735241462 isParatext "false" @default.
- W2735241462 isRetracted "false" @default.
- W2735241462 magId "2735241462" @default.
- W2735241462 workType "article" @default.