Matches in SemOpenAlex for { <https://semopenalex.org/work/W2735282772> ?p ?o ?g. }
- W2735282772 abstract "Time series forecasting is usually done in a deterministic sense, such as in autoregressive moving average models, where a future state is predicted as a linear combination of past events. However, by formulating the problem in a probabilistic sense, soft predictions are obtained from a given probability mass function. This paper uses a deep neural network for probabilistic forecasting of time series by minimizing the cross entropy of the probability of future symbols from a given state. The advantage of this type of model is that it makes probabilistic inferences from the ground up, and without any restrictive assumptions (e.g., second order statistics). The efficacy of the proposed model is tested by forecasting the emergence of combustion instabilities, defined to be the root mean square of the pressure signal inside a laboratory-scale combustor system. The proposed algorithm has been compared with the autoregressive moving average (ARMA) model, which acts as a baseline for many time-series forecasting tasks, and the proposed model is shown to significantly outperform the ARMA model in this task." @default.
- W2735282772 created "2017-07-21" @default.
- W2735282772 creator A5003487011 @default.
- W2735282772 creator A5018102423 @default.
- W2735282772 creator A5041594244 @default.
- W2735282772 creator A5044367029 @default.
- W2735282772 creator A5051396557 @default.
- W2735282772 date "2017-05-01" @default.
- W2735282772 modified "2023-10-03" @default.
- W2735282772 title "Probabilistic forecasting of symbol sequences with deep neural networks" @default.
- W2735282772 cites W1586335931 @default.
- W2735282772 cites W1592642180 @default.
- W2735282772 cites W1822742915 @default.
- W2735282772 cites W2001179000 @default.
- W2735282772 cites W2030305104 @default.
- W2735282772 cites W2114655358 @default.
- W2735282772 cites W2116064496 @default.
- W2735282772 cites W2129783285 @default.
- W2735282772 cites W2136922672 @default.
- W2735282772 cites W2137983211 @default.
- W2735282772 cites W2169739344 @default.
- W2735282772 cites W2181523240 @default.
- W2735282772 cites W2384495648 @default.
- W2735282772 cites W2482115077 @default.
- W2735282772 cites W2919115771 @default.
- W2735282772 cites W44815768 @default.
- W2735282772 cites W830721899 @default.
- W2735282772 doi "https://doi.org/10.23919/acc.2017.7963431" @default.
- W2735282772 hasPublicationYear "2017" @default.
- W2735282772 type Work @default.
- W2735282772 sameAs 2735282772 @default.
- W2735282772 citedByCount "2" @default.
- W2735282772 countsByYear W27352827722018 @default.
- W2735282772 countsByYear W27352827722023 @default.
- W2735282772 crossrefType "proceedings-article" @default.
- W2735282772 hasAuthorship W2735282772A5003487011 @default.
- W2735282772 hasAuthorship W2735282772A5018102423 @default.
- W2735282772 hasAuthorship W2735282772A5041594244 @default.
- W2735282772 hasAuthorship W2735282772A5044367029 @default.
- W2735282772 hasAuthorship W2735282772A5051396557 @default.
- W2735282772 hasConcept C105795698 @default.
- W2735282772 hasConcept C106301342 @default.
- W2735282772 hasConcept C11413529 @default.
- W2735282772 hasConcept C119857082 @default.
- W2735282772 hasConcept C121332964 @default.
- W2735282772 hasConcept C122282355 @default.
- W2735282772 hasConcept C139945424 @default.
- W2735282772 hasConcept C143724316 @default.
- W2735282772 hasConcept C151406439 @default.
- W2735282772 hasConcept C151730666 @default.
- W2735282772 hasConcept C154945302 @default.
- W2735282772 hasConcept C159877910 @default.
- W2735282772 hasConcept C33923547 @default.
- W2735282772 hasConcept C41008148 @default.
- W2735282772 hasConcept C49937458 @default.
- W2735282772 hasConcept C50644808 @default.
- W2735282772 hasConcept C62520636 @default.
- W2735282772 hasConcept C74883015 @default.
- W2735282772 hasConcept C86803240 @default.
- W2735282772 hasConceptScore W2735282772C105795698 @default.
- W2735282772 hasConceptScore W2735282772C106301342 @default.
- W2735282772 hasConceptScore W2735282772C11413529 @default.
- W2735282772 hasConceptScore W2735282772C119857082 @default.
- W2735282772 hasConceptScore W2735282772C121332964 @default.
- W2735282772 hasConceptScore W2735282772C122282355 @default.
- W2735282772 hasConceptScore W2735282772C139945424 @default.
- W2735282772 hasConceptScore W2735282772C143724316 @default.
- W2735282772 hasConceptScore W2735282772C151406439 @default.
- W2735282772 hasConceptScore W2735282772C151730666 @default.
- W2735282772 hasConceptScore W2735282772C154945302 @default.
- W2735282772 hasConceptScore W2735282772C159877910 @default.
- W2735282772 hasConceptScore W2735282772C33923547 @default.
- W2735282772 hasConceptScore W2735282772C41008148 @default.
- W2735282772 hasConceptScore W2735282772C49937458 @default.
- W2735282772 hasConceptScore W2735282772C50644808 @default.
- W2735282772 hasConceptScore W2735282772C62520636 @default.
- W2735282772 hasConceptScore W2735282772C74883015 @default.
- W2735282772 hasConceptScore W2735282772C86803240 @default.
- W2735282772 hasLocation W27352827721 @default.
- W2735282772 hasOpenAccess W2735282772 @default.
- W2735282772 hasPrimaryLocation W27352827721 @default.
- W2735282772 hasRelatedWork W2003766637 @default.
- W2735282772 hasRelatedWork W2076171061 @default.
- W2735282772 hasRelatedWork W2093134417 @default.
- W2735282772 hasRelatedWork W2125205396 @default.
- W2735282772 hasRelatedWork W2141181254 @default.
- W2735282772 hasRelatedWork W2341468648 @default.
- W2735282772 hasRelatedWork W2536690300 @default.
- W2735282772 hasRelatedWork W2553482462 @default.
- W2735282772 hasRelatedWork W2625141987 @default.
- W2735282772 hasRelatedWork W2766346027 @default.
- W2735282772 hasRelatedWork W2770174815 @default.
- W2735282772 hasRelatedWork W2777476164 @default.
- W2735282772 hasRelatedWork W2877223648 @default.
- W2735282772 hasRelatedWork W2913037807 @default.
- W2735282772 hasRelatedWork W2982079384 @default.
- W2735282772 hasRelatedWork W2993051803 @default.
- W2735282772 hasRelatedWork W2996810078 @default.
- W2735282772 hasRelatedWork W3030077209 @default.
- W2735282772 hasRelatedWork W3128505623 @default.