Matches in SemOpenAlex for { <https://semopenalex.org/work/W2735315095> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2735315095 abstract "With the rapid advancements in technology, Massive Open Online Courses (MOOCs) have become the most popular form of online educational delivery, largely due to the removal of geographical and financial barriers for participants. A large number of learners globally enrol in such courses. Despite the flexible accessibility, results indicate that the completion rate is quite low. Educational Data Mining and Learning Analytics are emerging fields of research that aim to enhance the delivery of education through the application of various statistical and machine learning approaches. An extensive literature survey indicates that no significant research is available within the area of MOOC data analysis, in particular considering the behavioural patterns of users. In this paper, therefore, two sets of features, based on learner behavioural patterns, were compared in terms of their suitability for predicting the course outcome of learners participating in MOOCs. Our Exploratory Data Analysis demonstrates that there is strong correlation between click stream actions and successful learner outcomes. Various Machine Learning algorithms have been applied to enhance the accuracy of classifier models. Simulation results from our investigation have shown that Random Forest achieved viable performance for our prediction problem, obtaining the highest performance of the models tested. Conversely, Linear Discriminant Analysis achieved the lowest relative performance, though represented only a marginal reduction in performance relative to the Random Forest." @default.
- W2735315095 created "2017-07-21" @default.
- W2735315095 creator A5019133627 @default.
- W2735315095 creator A5029559868 @default.
- W2735315095 creator A5065235535 @default.
- W2735315095 creator A5078720792 @default.
- W2735315095 creator A5083030885 @default.
- W2735315095 creator A5086190619 @default.
- W2735315095 date "2017-05-01" @default.
- W2735315095 modified "2023-10-05" @default.
- W2735315095 title "Machine learning approaches to predict learning outcomes in Massive open online courses" @default.
- W2735315095 cites W1615000945 @default.
- W2735315095 cites W2006444123 @default.
- W2735315095 cites W2012265254 @default.
- W2735315095 cites W2032072274 @default.
- W2735315095 cites W2079372207 @default.
- W2735315095 cites W2100281923 @default.
- W2735315095 cites W2155261478 @default.
- W2735315095 cites W2250880511 @default.
- W2735315095 cites W2273136441 @default.
- W2735315095 cites W643967429 @default.
- W2735315095 doi "https://doi.org/10.1109/ijcnn.2017.7965922" @default.
- W2735315095 hasPublicationYear "2017" @default.
- W2735315095 type Work @default.
- W2735315095 sameAs 2735315095 @default.
- W2735315095 citedByCount "53" @default.
- W2735315095 countsByYear W27353150952018 @default.
- W2735315095 countsByYear W27353150952019 @default.
- W2735315095 countsByYear W27353150952020 @default.
- W2735315095 countsByYear W27353150952021 @default.
- W2735315095 countsByYear W27353150952022 @default.
- W2735315095 countsByYear W27353150952023 @default.
- W2735315095 crossrefType "proceedings-article" @default.
- W2735315095 hasAuthorship W2735315095A5019133627 @default.
- W2735315095 hasAuthorship W2735315095A5029559868 @default.
- W2735315095 hasAuthorship W2735315095A5065235535 @default.
- W2735315095 hasAuthorship W2735315095A5078720792 @default.
- W2735315095 hasAuthorship W2735315095A5083030885 @default.
- W2735315095 hasAuthorship W2735315095A5086190619 @default.
- W2735315095 hasBestOaLocation W27353150952 @default.
- W2735315095 hasConcept C119857082 @default.
- W2735315095 hasConcept C12267149 @default.
- W2735315095 hasConcept C136764020 @default.
- W2735315095 hasConcept C154945302 @default.
- W2735315095 hasConcept C169258074 @default.
- W2735315095 hasConcept C2522767166 @default.
- W2735315095 hasConcept C2777598771 @default.
- W2735315095 hasConcept C2777648619 @default.
- W2735315095 hasConcept C2777808570 @default.
- W2735315095 hasConcept C2982736386 @default.
- W2735315095 hasConcept C41008148 @default.
- W2735315095 hasConcept C69738355 @default.
- W2735315095 hasConcept C79158427 @default.
- W2735315095 hasConceptScore W2735315095C119857082 @default.
- W2735315095 hasConceptScore W2735315095C12267149 @default.
- W2735315095 hasConceptScore W2735315095C136764020 @default.
- W2735315095 hasConceptScore W2735315095C154945302 @default.
- W2735315095 hasConceptScore W2735315095C169258074 @default.
- W2735315095 hasConceptScore W2735315095C2522767166 @default.
- W2735315095 hasConceptScore W2735315095C2777598771 @default.
- W2735315095 hasConceptScore W2735315095C2777648619 @default.
- W2735315095 hasConceptScore W2735315095C2777808570 @default.
- W2735315095 hasConceptScore W2735315095C2982736386 @default.
- W2735315095 hasConceptScore W2735315095C41008148 @default.
- W2735315095 hasConceptScore W2735315095C69738355 @default.
- W2735315095 hasConceptScore W2735315095C79158427 @default.
- W2735315095 hasLocation W27353150951 @default.
- W2735315095 hasLocation W27353150952 @default.
- W2735315095 hasOpenAccess W2735315095 @default.
- W2735315095 hasPrimaryLocation W27353150951 @default.
- W2735315095 hasRelatedWork W2098065385 @default.
- W2735315095 hasRelatedWork W2250880511 @default.
- W2735315095 hasRelatedWork W2273136441 @default.
- W2735315095 hasRelatedWork W2295164685 @default.
- W2735315095 hasRelatedWork W2414670006 @default.
- W2735315095 hasRelatedWork W2529456000 @default.
- W2735315095 hasRelatedWork W2546314413 @default.
- W2735315095 hasRelatedWork W2602387228 @default.
- W2735315095 hasRelatedWork W2754427584 @default.
- W2735315095 hasRelatedWork W2791021147 @default.
- W2735315095 hasRelatedWork W2804302410 @default.
- W2735315095 hasRelatedWork W2898591453 @default.
- W2735315095 hasRelatedWork W2903002920 @default.
- W2735315095 hasRelatedWork W2911212059 @default.
- W2735315095 hasRelatedWork W2945991725 @default.
- W2735315095 hasRelatedWork W2964227388 @default.
- W2735315095 hasRelatedWork W2983910879 @default.
- W2735315095 hasRelatedWork W2999048228 @default.
- W2735315095 hasRelatedWork W3168178829 @default.
- W2735315095 hasRelatedWork W3204653574 @default.
- W2735315095 isParatext "false" @default.
- W2735315095 isRetracted "false" @default.
- W2735315095 magId "2735315095" @default.
- W2735315095 workType "article" @default.