Matches in SemOpenAlex for { <https://semopenalex.org/work/W2735338765> ?p ?o ?g. }
- W2735338765 endingPage "294" @default.
- W2735338765 startingPage "274" @default.
- W2735338765 abstract "ABSTRACT Potential field data such as geoid and gravity anomalies are globally available and offer valuable information about the Earth's lithosphere especially in areas where seismic data coverage is sparse. For instance, non‐linear inversion of Bouguer anomalies could be used to estimate the crustal structures including variations of the crustal density and of the depth of the crust–mantle boundary, that is, Moho. However, due to non‐linearity of this inverse problem, classical inversion methods would fail whenever there is no reliable initial model. Swarm intelligence algorithms, such as particle swarm optimisation, are a promising alternative to classical inversion methods because the quality of their solutions does not depend on the initial model; they do not use the derivatives of the objective function, hence allowing the use of L 1 norm; and finally, they are global search methods, meaning, the problem could be non‐convex. In this paper, quantum‐behaved particle swarm, a probabilistic swarm intelligence‐like algorithm, is used to solve the non‐linear gravity inverse problem. The method is first successfully tested on a realistic synthetic crustal model with a linear vertical density gradient and lateral density and depth variations at the base of crust in the presence of white Gaussian noise. Then, it is applied to the EIGEN 6c4, a combined global gravity model, to estimate the depth to the base of the crust and the mean density contrast between the crust and the upper‐mantle lithosphere in the Eurasia–Arabia continental collision zone along a 400 km profile crossing the Zagros Mountains (Iran). The results agree well with previously published works including both seismic and potential field studies." @default.
- W2735338765 created "2017-07-21" @default.
- W2735338765 creator A5031590347 @default.
- W2735338765 creator A5035816685 @default.
- W2735338765 creator A5051591942 @default.
- W2735338765 date "2017-11-06" @default.
- W2735338765 modified "2023-10-16" @default.
- W2735338765 title "Non-linear stochastic inversion of gravity data via quantum-behaved particle swarm optimisation: application to Eurasia-Arabia collision zone (Zagros, Iran)" @default.
- W2735338765 cites W1509613726 @default.
- W2735338765 cites W1511624203 @default.
- W2735338765 cites W1524460150 @default.
- W2735338765 cites W1594234351 @default.
- W2735338765 cites W1889482056 @default.
- W2735338765 cites W1906967168 @default.
- W2735338765 cites W1955979307 @default.
- W2735338765 cites W1968915050 @default.
- W2735338765 cites W1970404728 @default.
- W2735338765 cites W1976172121 @default.
- W2735338765 cites W1985091612 @default.
- W2735338765 cites W1989704882 @default.
- W2735338765 cites W1995630825 @default.
- W2735338765 cites W1996768273 @default.
- W2735338765 cites W1998044511 @default.
- W2735338765 cites W1998552606 @default.
- W2735338765 cites W2005013369 @default.
- W2735338765 cites W2006682122 @default.
- W2735338765 cites W2017848200 @default.
- W2735338765 cites W2020191779 @default.
- W2735338765 cites W2023091835 @default.
- W2735338765 cites W2043357063 @default.
- W2735338765 cites W2049523962 @default.
- W2735338765 cites W2053987409 @default.
- W2735338765 cites W2061250918 @default.
- W2735338765 cites W2068837397 @default.
- W2735338765 cites W2072788652 @default.
- W2735338765 cites W2074609861 @default.
- W2735338765 cites W2077208327 @default.
- W2735338765 cites W2080885600 @default.
- W2735338765 cites W2081778372 @default.
- W2735338765 cites W2082399372 @default.
- W2735338765 cites W2086159836 @default.
- W2735338765 cites W2089337852 @default.
- W2735338765 cites W2091735644 @default.
- W2735338765 cites W2092148005 @default.
- W2735338765 cites W2097446341 @default.
- W2735338765 cites W2102160520 @default.
- W2735338765 cites W2103559027 @default.
- W2735338765 cites W2107941094 @default.
- W2735338765 cites W2108537222 @default.
- W2735338765 cites W2109567422 @default.
- W2735338765 cites W2109596691 @default.
- W2735338765 cites W2110115891 @default.
- W2735338765 cites W2112036188 @default.
- W2735338765 cites W2114424556 @default.
- W2735338765 cites W2118311364 @default.
- W2735338765 cites W2119004025 @default.
- W2735338765 cites W2122985917 @default.
- W2735338765 cites W2128416043 @default.
- W2735338765 cites W2131183806 @default.
- W2735338765 cites W2134736347 @default.
- W2735338765 cites W2141195276 @default.
- W2735338765 cites W2143560894 @default.
- W2735338765 cites W2148018490 @default.
- W2735338765 cites W2149933531 @default.
- W2735338765 cites W2150904297 @default.
- W2735338765 cites W2160914980 @default.
- W2735338765 cites W2161947319 @default.
- W2735338765 cites W2163100486 @default.
- W2735338765 cites W2164418689 @default.
- W2735338765 cites W2168747298 @default.
- W2735338765 cites W2169245194 @default.
- W2735338765 cites W2169316169 @default.
- W2735338765 cites W2298424073 @default.
- W2735338765 cites W2304555220 @default.
- W2735338765 cites W2400763171 @default.
- W2735338765 cites W2546848279 @default.
- W2735338765 cites W2611431884 @default.
- W2735338765 cites W2728765125 @default.
- W2735338765 cites W2884500240 @default.
- W2735338765 cites W4231058023 @default.
- W2735338765 cites W4300273322 @default.
- W2735338765 doi "https://doi.org/10.1111/1365-2478.12558" @default.
- W2735338765 hasPublicationYear "2017" @default.
- W2735338765 type Work @default.
- W2735338765 sameAs 2735338765 @default.
- W2735338765 citedByCount "11" @default.
- W2735338765 countsByYear W27353387652018 @default.
- W2735338765 countsByYear W27353387652020 @default.
- W2735338765 countsByYear W27353387652021 @default.
- W2735338765 countsByYear W27353387652022 @default.
- W2735338765 countsByYear W27353387652023 @default.
- W2735338765 crossrefType "journal-article" @default.
- W2735338765 hasAuthorship W2735338765A5031590347 @default.
- W2735338765 hasAuthorship W2735338765A5035816685 @default.
- W2735338765 hasAuthorship W2735338765A5051591942 @default.
- W2735338765 hasConcept C113346285 @default.
- W2735338765 hasConcept C11413529 @default.
- W2735338765 hasConcept C121332964 @default.