Matches in SemOpenAlex for { <https://semopenalex.org/work/W2735526455> ?p ?o ?g. }
- W2735526455 endingPage "7987" @default.
- W2735526455 startingPage "7974" @default.
- W2735526455 abstract "Due to its atomic thickness, porous graphene with sub-nanometer pore sizes constitutes a promising candidate for gas separation membranes that exhibit ultrahigh permeances. While graphene pores can greatly facilitate gas mixture separation, there is currently no validated analytical framework with which one can predict gas permeation through a given graphene pore. In this work, we simulate the permeation of adsorptive gases, such as CO2 and CH4, through sub-nanometer graphene pores using molecular dynamics simulations. We show that gas permeation can typically be decoupled into two steps: (1) adsorption of gas molecules to the pore mouth and (2) translocation of gas molecules from the pore mouth on one side of the graphene membrane to the pore mouth on the other side. We find that the translocation rate coefficient can be expressed using an Arrhenius-type equation, where the energy barrier and the pre-exponential factor can be theoretically predicted using the transition state theory for classical barrier crossing events. We propose a relation between the pre-exponential factor and the entropy penalty of a gas molecule crossing the pore. Furthermore, on the basis of the theory, we propose an efficient algorithm to calculate CO2 and CH4 permeances per pore for sub-nanometer graphene pores of any shape. For the CO2/CH4 mixture, the graphene nanopores exhibit a trade-off between the CO2 permeance and the CO2/CH4 separation factor. This upper bound on a Robeson plot of selectivity versus permeance for a given pore density is predicted and described by the theory. Pores with CO2/CH4 separation factors higher than 102 have CO2 permeances per pore lower than 10-22 mol s-1 Pa-1, and pores with separation factors of ∼10 have CO2 permeances per pore between 10-22 and 10-21 mol s-1 Pa-1. Finally, we show that a pore density of 1014 m-2 is required for a porous graphene membrane to exceed the permeance-selectivity upper bound of polymeric materials. Moreover, we show that a higher pore density can potentially further boost the permeation performance of a porous graphene membrane above all existing membranes. Our findings provide insights into the potential and the limitations of porous graphene membranes for gas separation and provide an efficient methodology for screening nanopore configurations and sizes for the efficient separation of desired gas mixtures." @default.
- W2735526455 created "2017-07-21" @default.
- W2735526455 creator A5010581446 @default.
- W2735526455 creator A5029267851 @default.
- W2735526455 creator A5041330438 @default.
- W2735526455 creator A5055610615 @default.
- W2735526455 creator A5059450755 @default.
- W2735526455 creator A5060471476 @default.
- W2735526455 creator A5072894020 @default.
- W2735526455 date "2017-07-19" @default.
- W2735526455 modified "2023-10-03" @default.
- W2735526455 title "Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation" @default.
- W2735526455 cites W1493962445 @default.
- W2735526455 cites W1600426419 @default.
- W2735526455 cites W1928037744 @default.
- W2735526455 cites W1967752584 @default.
- W2735526455 cites W1974478896 @default.
- W2735526455 cites W1978088653 @default.
- W2735526455 cites W1979288280 @default.
- W2735526455 cites W1985934170 @default.
- W2735526455 cites W1986714070 @default.
- W2735526455 cites W1989331926 @default.
- W2735526455 cites W1991794210 @default.
- W2735526455 cites W1992581616 @default.
- W2735526455 cites W2011254969 @default.
- W2735526455 cites W2013687226 @default.
- W2735526455 cites W2014547966 @default.
- W2735526455 cites W2017236889 @default.
- W2735526455 cites W2017350771 @default.
- W2735526455 cites W2019465613 @default.
- W2735526455 cites W2022231452 @default.
- W2735526455 cites W2022336433 @default.
- W2735526455 cites W2022353023 @default.
- W2735526455 cites W2022723632 @default.
- W2735526455 cites W2024500602 @default.
- W2735526455 cites W2024521556 @default.
- W2735526455 cites W2026873621 @default.
- W2735526455 cites W2027408247 @default.
- W2735526455 cites W2030887162 @default.
- W2735526455 cites W2033590759 @default.
- W2735526455 cites W2035418060 @default.
- W2735526455 cites W2037467529 @default.
- W2735526455 cites W2043701535 @default.
- W2735526455 cites W2046138316 @default.
- W2735526455 cites W2050587403 @default.
- W2735526455 cites W2051381895 @default.
- W2735526455 cites W2053557914 @default.
- W2735526455 cites W2067765323 @default.
- W2735526455 cites W2068345837 @default.
- W2735526455 cites W2072611698 @default.
- W2735526455 cites W2073858663 @default.
- W2735526455 cites W2075717509 @default.
- W2735526455 cites W2078315409 @default.
- W2735526455 cites W2080734168 @default.
- W2735526455 cites W2082174143 @default.
- W2735526455 cites W2089127386 @default.
- W2735526455 cites W2093552732 @default.
- W2735526455 cites W2095784506 @default.
- W2735526455 cites W2097920747 @default.
- W2735526455 cites W2107952203 @default.
- W2735526455 cites W2112154906 @default.
- W2735526455 cites W2114351820 @default.
- W2735526455 cites W2118849046 @default.
- W2735526455 cites W2122199548 @default.
- W2735526455 cites W2122840059 @default.
- W2735526455 cites W2134090723 @default.
- W2735526455 cites W2135536698 @default.
- W2735526455 cites W2139509575 @default.
- W2735526455 cites W2152832683 @default.
- W2735526455 cites W2155216854 @default.
- W2735526455 cites W2156454985 @default.
- W2735526455 cites W2172208210 @default.
- W2735526455 cites W2196176440 @default.
- W2735526455 cites W2208724907 @default.
- W2735526455 cites W2290508795 @default.
- W2735526455 cites W2322111068 @default.
- W2735526455 cites W2334600718 @default.
- W2735526455 cites W2416948540 @default.
- W2735526455 cites W2590015384 @default.
- W2735526455 cites W2594688731 @default.
- W2735526455 cites W3023737508 @default.
- W2735526455 cites W32398395 @default.
- W2735526455 doi "https://doi.org/10.1021/acsnano.7b02523" @default.
- W2735526455 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28696710" @default.
- W2735526455 hasPublicationYear "2017" @default.
- W2735526455 type Work @default.
- W2735526455 sameAs 2735526455 @default.
- W2735526455 citedByCount "94" @default.
- W2735526455 countsByYear W27355264552018 @default.
- W2735526455 countsByYear W27355264552019 @default.
- W2735526455 countsByYear W27355264552020 @default.
- W2735526455 countsByYear W27355264552021 @default.
- W2735526455 countsByYear W27355264552022 @default.
- W2735526455 countsByYear W27355264552023 @default.
- W2735526455 crossrefType "journal-article" @default.
- W2735526455 hasAuthorship W2735526455A5010581446 @default.
- W2735526455 hasAuthorship W2735526455A5029267851 @default.
- W2735526455 hasAuthorship W2735526455A5041330438 @default.