Matches in SemOpenAlex for { <https://semopenalex.org/work/W2735562012> ?p ?o ?g. }
- W2735562012 endingPage "439" @default.
- W2735562012 startingPage "409" @default.
- W2735562012 abstract "Computer vision is one of the most active research fields in technology today. Giving machines the ability to see and comprehend the world at the speed of sight creates endless applications and opportunities. Feature detection and description algorithms are considered as the retina for machine vision. However, most of these algorithms are typically computationally intensive, which prevents them from achieving real-time performance. As such, embedded vision accelerators (FPGA, ASIC, etc.) can be targeted due to their inherent parallelizability. This chapter provides a comprehensive study on some of the recent feature detection and description algorithms and their hardware solutions. Specifically, it begins with a synopsis on basic concepts followed by a comparative study, from which the maximally stable extremal regions (MSER) and the scale invariant feature transform (SIFT) algorithms are selected for further analysis due to their robust performance. The chapter then reports some of their recent algorithmic derivatives and highlights their recent hardware designs and architectures." @default.
- W2735562012 created "2017-07-21" @default.
- W2735562012 creator A5050738608 @default.
- W2735562012 creator A5085156813 @default.
- W2735562012 date "2017-07-13" @default.
- W2735562012 modified "2023-10-16" @default.
- W2735562012 title "Recent Advances in Feature Extraction and Description Algorithms" @default.
- W2735562012 cites W1505641881 @default.
- W2735562012 cites W1539000009 @default.
- W2735562012 cites W1850186504 @default.
- W2735562012 cites W1852915548 @default.
- W2735562012 cites W1966811077 @default.
- W2735562012 cites W1967140145 @default.
- W2735562012 cites W1972807703 @default.
- W2735562012 cites W1978555087 @default.
- W2735562012 cites W1980911747 @default.
- W2735562012 cites W2000356541 @default.
- W2735562012 cites W2005107673 @default.
- W2735562012 cites W2022903746 @default.
- W2735562012 cites W2043342205 @default.
- W2735562012 cites W2047814281 @default.
- W2735562012 cites W2048643691 @default.
- W2735562012 cites W2052094314 @default.
- W2735562012 cites W2077086634 @default.
- W2735562012 cites W2083200674 @default.
- W2735562012 cites W2092377008 @default.
- W2735562012 cites W2100297523 @default.
- W2735562012 cites W2105666116 @default.
- W2735562012 cites W2107186825 @default.
- W2735562012 cites W2118153703 @default.
- W2735562012 cites W2118572719 @default.
- W2735562012 cites W2124386111 @default.
- W2735562012 cites W2124404372 @default.
- W2735562012 cites W2126919075 @default.
- W2735562012 cites W2127191739 @default.
- W2735562012 cites W2127786001 @default.
- W2735562012 cites W2128017662 @default.
- W2735562012 cites W2131846894 @default.
- W2735562012 cites W2136703000 @default.
- W2735562012 cites W2138732321 @default.
- W2735562012 cites W2151103935 @default.
- W2735562012 cites W2152724437 @default.
- W2735562012 cites W2157593358 @default.
- W2735562012 cites W2157788957 @default.
- W2735562012 cites W2172188317 @default.
- W2735562012 cites W2177274842 @default.
- W2735562012 cites W2274527007 @default.
- W2735562012 cites W2278786327 @default.
- W2735562012 cites W2279416688 @default.
- W2735562012 cites W2290400697 @default.
- W2735562012 cites W2407741896 @default.
- W2735562012 cites W2485116416 @default.
- W2735562012 cites W2568974449 @default.
- W2735562012 cites W2913429812 @default.
- W2735562012 cites W2963044692 @default.
- W2735562012 cites W4205398292 @default.
- W2735562012 cites W4213154849 @default.
- W2735562012 doi "https://doi.org/10.4018/978-1-5225-2848-7.ch016" @default.
- W2735562012 hasPublicationYear "2017" @default.
- W2735562012 type Work @default.
- W2735562012 sameAs 2735562012 @default.
- W2735562012 citedByCount "0" @default.
- W2735562012 crossrefType "book-chapter" @default.
- W2735562012 hasAuthorship W2735562012A5050738608 @default.
- W2735562012 hasAuthorship W2735562012A5085156813 @default.
- W2735562012 hasConcept C113775141 @default.
- W2735562012 hasConcept C11413529 @default.
- W2735562012 hasConcept C121332964 @default.
- W2735562012 hasConcept C1276947 @default.
- W2735562012 hasConcept C138885662 @default.
- W2735562012 hasConcept C1517167 @default.
- W2735562012 hasConcept C154945302 @default.
- W2735562012 hasConcept C2776401178 @default.
- W2735562012 hasConcept C41008148 @default.
- W2735562012 hasConcept C41895202 @default.
- W2735562012 hasConcept C42935608 @default.
- W2735562012 hasConcept C52622490 @default.
- W2735562012 hasConcept C61265191 @default.
- W2735562012 hasConcept C9390403 @default.
- W2735562012 hasConceptScore W2735562012C113775141 @default.
- W2735562012 hasConceptScore W2735562012C11413529 @default.
- W2735562012 hasConceptScore W2735562012C121332964 @default.
- W2735562012 hasConceptScore W2735562012C1276947 @default.
- W2735562012 hasConceptScore W2735562012C138885662 @default.
- W2735562012 hasConceptScore W2735562012C1517167 @default.
- W2735562012 hasConceptScore W2735562012C154945302 @default.
- W2735562012 hasConceptScore W2735562012C2776401178 @default.
- W2735562012 hasConceptScore W2735562012C41008148 @default.
- W2735562012 hasConceptScore W2735562012C41895202 @default.
- W2735562012 hasConceptScore W2735562012C42935608 @default.
- W2735562012 hasConceptScore W2735562012C52622490 @default.
- W2735562012 hasConceptScore W2735562012C61265191 @default.
- W2735562012 hasConceptScore W2735562012C9390403 @default.
- W2735562012 hasLocation W27355620121 @default.
- W2735562012 hasOpenAccess W2735562012 @default.
- W2735562012 hasPrimaryLocation W27355620121 @default.
- W2735562012 hasRelatedWork W1582226822 @default.
- W2735562012 hasRelatedWork W2026303176 @default.