Matches in SemOpenAlex for { <https://semopenalex.org/work/W2735643103> ?p ?o ?g. }
- W2735643103 endingPage "30" @default.
- W2735643103 startingPage "1" @default.
- W2735643103 abstract "Estimating urban traffic conditions of an arterial network with GPS probe data is a practically important while substantially challenging problem, and has attracted increasing research interests recently. Although GPS probe data is becoming a ubiquitous data source for various traffic related applications currently, they are usually insufficient for fully estimating traffic conditions of a large arterial network due to the low sampling frequency. To explore other data sources for more effectively computing urban traffic conditions, we propose to collect various traffic events such as traffic accident and jam from social media as complementary information. In addition, to further explore other factors that might affect traffic conditions, we also extract rich auxiliary information including social events, road features, Point of Interest (POI), and weather. With the enriched traffic data and auxiliary information collected from different sources, we first study the traffic co-congestion pattern mining problem with the aim of discovering which road segments geographically close to each other are likely to co-occur traffic congestion. A search tree based approach is proposed to efficiently discover the co-congestion patterns. These patterns are then used to help estimate traffic congestions and detect anomalies in a transportation network. To fuse the multisourced data, we finally propose a coupled matrix and tensor factorization model named TCE_R to more accurately complete the sparse traffic congestion matrix by collaboratively factorizing it with other matrices and tensors formed by other data. We evaluate the proposed model on the arterial network of downtown Chicago with 1,257 road segments whose total length is nearly 700 miles. The results demonstrate the superior performance of TCE_R by comprehensive comparison with existing approaches." @default.
- W2735643103 created "2017-07-21" @default.
- W2735643103 creator A5011201549 @default.
- W2735643103 creator A5025184050 @default.
- W2735643103 creator A5035708362 @default.
- W2735643103 creator A5036357902 @default.
- W2735643103 creator A5036786337 @default.
- W2735643103 creator A5057573340 @default.
- W2735643103 creator A5071709543 @default.
- W2735643103 creator A5091381220 @default.
- W2735643103 date "2017-07-11" @default.
- W2735643103 modified "2023-09-25" @default.
- W2735643103 title "Computing Urban Traffic Congestions by Incorporating Sparse GPS Probe Data and Social Media Data" @default.
- W2735643103 cites W1514578609 @default.
- W2735643103 cites W1561128958 @default.
- W2735643103 cites W1892382968 @default.
- W2735643103 cites W1988636190 @default.
- W2735643103 cites W1989597542 @default.
- W2735643103 cites W1999110238 @default.
- W2735643103 cites W2024165284 @default.
- W2735643103 cites W2031346385 @default.
- W2735643103 cites W2031674781 @default.
- W2735643103 cites W2034258124 @default.
- W2735643103 cites W2042281163 @default.
- W2735643103 cites W2048250993 @default.
- W2735643103 cites W2049176600 @default.
- W2735643103 cites W2075192215 @default.
- W2735643103 cites W2081798520 @default.
- W2735643103 cites W2096808278 @default.
- W2735643103 cites W2102937240 @default.
- W2735643103 cites W2112738128 @default.
- W2735643103 cites W2126194848 @default.
- W2735643103 cites W2128415924 @default.
- W2735643103 cites W2132140174 @default.
- W2735643103 cites W2139205006 @default.
- W2735643103 cites W2142015871 @default.
- W2735643103 cites W2153458569 @default.
- W2735643103 cites W2154206668 @default.
- W2735643103 cites W2165178985 @default.
- W2735643103 cites W2168791259 @default.
- W2735643103 cites W2296704245 @default.
- W2735643103 cites W2326063265 @default.
- W2735643103 cites W2479932948 @default.
- W2735643103 cites W3021114543 @default.
- W2735643103 doi "https://doi.org/10.1145/3057281" @default.
- W2735643103 hasPublicationYear "2017" @default.
- W2735643103 type Work @default.
- W2735643103 sameAs 2735643103 @default.
- W2735643103 citedByCount "50" @default.
- W2735643103 countsByYear W27356431032017 @default.
- W2735643103 countsByYear W27356431032018 @default.
- W2735643103 countsByYear W27356431032019 @default.
- W2735643103 countsByYear W27356431032020 @default.
- W2735643103 countsByYear W27356431032021 @default.
- W2735643103 countsByYear W27356431032022 @default.
- W2735643103 countsByYear W27356431032023 @default.
- W2735643103 crossrefType "journal-article" @default.
- W2735643103 hasAuthorship W2735643103A5011201549 @default.
- W2735643103 hasAuthorship W2735643103A5025184050 @default.
- W2735643103 hasAuthorship W2735643103A5035708362 @default.
- W2735643103 hasAuthorship W2735643103A5036357902 @default.
- W2735643103 hasAuthorship W2735643103A5036786337 @default.
- W2735643103 hasAuthorship W2735643103A5057573340 @default.
- W2735643103 hasAuthorship W2735643103A5071709543 @default.
- W2735643103 hasAuthorship W2735643103A5091381220 @default.
- W2735643103 hasConcept C119857082 @default.
- W2735643103 hasConcept C124101348 @default.
- W2735643103 hasConcept C127413603 @default.
- W2735643103 hasConcept C136764020 @default.
- W2735643103 hasConcept C150140777 @default.
- W2735643103 hasConcept C154945302 @default.
- W2735643103 hasConcept C22212356 @default.
- W2735643103 hasConcept C25492975 @default.
- W2735643103 hasConcept C2778459138 @default.
- W2735643103 hasConcept C2779888511 @default.
- W2735643103 hasConcept C41008148 @default.
- W2735643103 hasConcept C518677369 @default.
- W2735643103 hasConcept C60229501 @default.
- W2735643103 hasConcept C64093975 @default.
- W2735643103 hasConcept C75684735 @default.
- W2735643103 hasConcept C76155785 @default.
- W2735643103 hasConceptScore W2735643103C119857082 @default.
- W2735643103 hasConceptScore W2735643103C124101348 @default.
- W2735643103 hasConceptScore W2735643103C127413603 @default.
- W2735643103 hasConceptScore W2735643103C136764020 @default.
- W2735643103 hasConceptScore W2735643103C150140777 @default.
- W2735643103 hasConceptScore W2735643103C154945302 @default.
- W2735643103 hasConceptScore W2735643103C22212356 @default.
- W2735643103 hasConceptScore W2735643103C25492975 @default.
- W2735643103 hasConceptScore W2735643103C2778459138 @default.
- W2735643103 hasConceptScore W2735643103C2779888511 @default.
- W2735643103 hasConceptScore W2735643103C41008148 @default.
- W2735643103 hasConceptScore W2735643103C518677369 @default.
- W2735643103 hasConceptScore W2735643103C60229501 @default.
- W2735643103 hasConceptScore W2735643103C64093975 @default.
- W2735643103 hasConceptScore W2735643103C75684735 @default.
- W2735643103 hasConceptScore W2735643103C76155785 @default.
- W2735643103 hasFunder F4320306076 @default.