Matches in SemOpenAlex for { <https://semopenalex.org/work/W2735721473> ?p ?o ?g. }
- W2735721473 abstract "Abstract Stochastic weather generators can generate very long time series of weather patterns, which are indispensable in earth sciences, ecology and climate research. Yet, both their potential and limitations remain largely unclear because past research has typically focused on eclectic case studies at small spatial scales in temperate climates. In addition, stochastic multi-site algorithms are usually not publicly available, making the reproducibility of results difficult. To overcome these limitations, we investigated the performance of the reduced-complexity multi-site precipitation generator TripleM across three different climatic regions in the United States. By resampling observations, we investigated for the first time the performance of a multi-site precipitation generator as a function of the extent of the gauge network and the network density. The definition of the role of the network density provides new insights into the applicability in data-poor contexts. The performance was assessed using nine different statistical metrics with main focus on the inter-annual variability of precipitation and the lengths of dry and wet spells. Among our study regions, our results indicate a more accurate performance in wet temperate climates compared to drier climates. Performance deficits are more marked at larger spatial scales due to the increasing heterogeneity of climatic conditions." @default.
- W2735721473 created "2017-07-21" @default.
- W2735721473 creator A5005308461 @default.
- W2735721473 creator A5028012859 @default.
- W2735721473 creator A5050776780 @default.
- W2735721473 creator A5071823740 @default.
- W2735721473 creator A5073833985 @default.
- W2735721473 creator A5076465658 @default.
- W2735721473 date "2017-07-14" @default.
- W2735721473 modified "2023-10-17" @default.
- W2735721473 title "Can weather generation capture precipitation patterns across different climates, spatial scales and under data scarcity?" @default.
- W2735721473 cites W1217270653 @default.
- W2735721473 cites W1488457118 @default.
- W2735721473 cites W1521615968 @default.
- W2735721473 cites W1597781749 @default.
- W2735721473 cites W1607625392 @default.
- W2735721473 cites W1645858368 @default.
- W2735721473 cites W1667821788 @default.
- W2735721473 cites W1970156874 @default.
- W2735721473 cites W1972854985 @default.
- W2735721473 cites W1973824065 @default.
- W2735721473 cites W1974290788 @default.
- W2735721473 cites W1975568975 @default.
- W2735721473 cites W1976280956 @default.
- W2735721473 cites W1978423266 @default.
- W2735721473 cites W1993196883 @default.
- W2735721473 cites W1995903631 @default.
- W2735721473 cites W1996613904 @default.
- W2735721473 cites W2015886781 @default.
- W2735721473 cites W2018375557 @default.
- W2735721473 cites W2020098188 @default.
- W2735721473 cites W2026189396 @default.
- W2735721473 cites W2029604816 @default.
- W2735721473 cites W2035022872 @default.
- W2735721473 cites W2041321637 @default.
- W2735721473 cites W2045296799 @default.
- W2735721473 cites W2051662511 @default.
- W2735721473 cites W2053058844 @default.
- W2735721473 cites W2053347177 @default.
- W2735721473 cites W2061972487 @default.
- W2735721473 cites W2069241928 @default.
- W2735721473 cites W2077012240 @default.
- W2735721473 cites W2077766806 @default.
- W2735721473 cites W2085383057 @default.
- W2735721473 cites W2087056053 @default.
- W2735721473 cites W2087449436 @default.
- W2735721473 cites W2093102695 @default.
- W2735721473 cites W2104987209 @default.
- W2735721473 cites W2105993164 @default.
- W2735721473 cites W2109030102 @default.
- W2735721473 cites W2109480392 @default.
- W2735721473 cites W2110125735 @default.
- W2735721473 cites W2127213100 @default.
- W2735721473 cites W2131878767 @default.
- W2735721473 cites W2132789303 @default.
- W2735721473 cites W2136730116 @default.
- W2735721473 cites W2138907557 @default.
- W2735721473 cites W2142001501 @default.
- W2735721473 cites W2145804546 @default.
- W2735721473 cites W2149403743 @default.
- W2735721473 cites W2149939858 @default.
- W2735721473 cites W2153808680 @default.
- W2735721473 cites W2156224118 @default.
- W2735721473 cites W2165037481 @default.
- W2735721473 cites W2165380978 @default.
- W2735721473 cites W2170207977 @default.
- W2735721473 cites W2170351006 @default.
- W2735721473 cites W2171642766 @default.
- W2735721473 cites W2172510282 @default.
- W2735721473 cites W2179625082 @default.
- W2735721473 cites W2268461985 @default.
- W2735721473 cites W2316301889 @default.
- W2735721473 cites W2318460002 @default.
- W2735721473 cites W2341415199 @default.
- W2735721473 cites W2342358220 @default.
- W2735721473 cites W2471768798 @default.
- W2735721473 cites W2522346143 @default.
- W2735721473 cites W2528690380 @default.
- W2735721473 cites W2537448180 @default.
- W2735721473 cites W2556565539 @default.
- W2735721473 doi "https://doi.org/10.1038/s41598-017-05822-y" @default.
- W2735721473 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5511179" @default.
- W2735721473 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28710411" @default.
- W2735721473 hasPublicationYear "2017" @default.
- W2735721473 type Work @default.
- W2735721473 sameAs 2735721473 @default.
- W2735721473 citedByCount "32" @default.
- W2735721473 countsByYear W27357214732018 @default.
- W2735721473 countsByYear W27357214732019 @default.
- W2735721473 countsByYear W27357214732020 @default.
- W2735721473 countsByYear W27357214732021 @default.
- W2735721473 countsByYear W27357214732022 @default.
- W2735721473 countsByYear W27357214732023 @default.
- W2735721473 crossrefType "journal-article" @default.
- W2735721473 hasAuthorship W2735721473A5005308461 @default.
- W2735721473 hasAuthorship W2735721473A5028012859 @default.
- W2735721473 hasAuthorship W2735721473A5050776780 @default.
- W2735721473 hasAuthorship W2735721473A5071823740 @default.
- W2735721473 hasAuthorship W2735721473A5073833985 @default.
- W2735721473 hasAuthorship W2735721473A5076465658 @default.