Matches in SemOpenAlex for { <https://semopenalex.org/work/W2735751036> ?p ?o ?g. }
- W2735751036 abstract "One of the greatest challenges in computational science and engineering today is how to combine complex data with complex models to create better predictions. This challenge cuts across every application area within CS&E, from geosciences, materials, chemical systems, biological systems, and astrophysics to engineered systems in aerospace, transportation, structures, electronics, biomedicine, and beyond. Many of these systems are characterized by complex nonlinear behavior coupling multiple physical processes over a wide range of length and time scales. Mathematical and computational models of these systems often contain numerous uncertain parameters, making high-reliability predictive modeling a challenge. Rapidly expanding volumes of observational data—along with tremendous increases in HPC capability—present opportunities to reduce these uncertainties via solution of large-scale inverse problems." @default.
- W2735751036 created "2017-07-21" @default.
- W2735751036 creator A5006603988 @default.
- W2735751036 creator A5012373865 @default.
- W2735751036 creator A5049331711 @default.
- W2735751036 creator A5057284080 @default.
- W2735751036 date "2017-01-01" @default.
- W2735751036 modified "2023-09-27" @default.
- W2735751036 title "Scalable Algorithms for Bayesian Inference of Large-Scale Models from Large-Scale Data" @default.
- W2735751036 cites W1575501007 @default.
- W2735751036 cites W1910855269 @default.
- W2735751036 cites W1957459737 @default.
- W2735751036 cites W1979313559 @default.
- W2735751036 cites W1985685378 @default.
- W2735751036 cites W2019119172 @default.
- W2735751036 cites W2074836377 @default.
- W2735751036 cites W2079118382 @default.
- W2735751036 cites W2082261407 @default.
- W2735751036 cites W2101259661 @default.
- W2735751036 cites W2102074292 @default.
- W2735751036 cites W2315057816 @default.
- W2735751036 cites W2332163904 @default.
- W2735751036 cites W2497021759 @default.
- W2735751036 cites W2517666902 @default.
- W2735751036 cites W2962707560 @default.
- W2735751036 cites W2962841346 @default.
- W2735751036 cites W2963427446 @default.
- W2735751036 cites W2964225090 @default.
- W2735751036 cites W2964324126 @default.
- W2735751036 cites W3100235104 @default.
- W2735751036 cites W4234524531 @default.
- W2735751036 doi "https://doi.org/10.1007/978-3-319-61982-8_1" @default.
- W2735751036 hasPublicationYear "2017" @default.
- W2735751036 type Work @default.
- W2735751036 sameAs 2735751036 @default.
- W2735751036 citedByCount "0" @default.
- W2735751036 crossrefType "book-chapter" @default.
- W2735751036 hasAuthorship W2735751036A5006603988 @default.
- W2735751036 hasAuthorship W2735751036A5012373865 @default.
- W2735751036 hasAuthorship W2735751036A5049331711 @default.
- W2735751036 hasAuthorship W2735751036A5057284080 @default.
- W2735751036 hasConcept C11413529 @default.
- W2735751036 hasConcept C119857082 @default.
- W2735751036 hasConcept C121332964 @default.
- W2735751036 hasConcept C127413603 @default.
- W2735751036 hasConcept C134306372 @default.
- W2735751036 hasConcept C135252773 @default.
- W2735751036 hasConcept C146978453 @default.
- W2735751036 hasConcept C154945302 @default.
- W2735751036 hasConcept C158622935 @default.
- W2735751036 hasConcept C163258240 @default.
- W2735751036 hasConcept C167740415 @default.
- W2735751036 hasConcept C2776214188 @default.
- W2735751036 hasConcept C2778755073 @default.
- W2735751036 hasConcept C32230216 @default.
- W2735751036 hasConcept C33923547 @default.
- W2735751036 hasConcept C41008148 @default.
- W2735751036 hasConcept C43214815 @default.
- W2735751036 hasConcept C47822265 @default.
- W2735751036 hasConcept C48044578 @default.
- W2735751036 hasConcept C62520636 @default.
- W2735751036 hasConcept C77088390 @default.
- W2735751036 hasConceptScore W2735751036C11413529 @default.
- W2735751036 hasConceptScore W2735751036C119857082 @default.
- W2735751036 hasConceptScore W2735751036C121332964 @default.
- W2735751036 hasConceptScore W2735751036C127413603 @default.
- W2735751036 hasConceptScore W2735751036C134306372 @default.
- W2735751036 hasConceptScore W2735751036C135252773 @default.
- W2735751036 hasConceptScore W2735751036C146978453 @default.
- W2735751036 hasConceptScore W2735751036C154945302 @default.
- W2735751036 hasConceptScore W2735751036C158622935 @default.
- W2735751036 hasConceptScore W2735751036C163258240 @default.
- W2735751036 hasConceptScore W2735751036C167740415 @default.
- W2735751036 hasConceptScore W2735751036C2776214188 @default.
- W2735751036 hasConceptScore W2735751036C2778755073 @default.
- W2735751036 hasConceptScore W2735751036C32230216 @default.
- W2735751036 hasConceptScore W2735751036C33923547 @default.
- W2735751036 hasConceptScore W2735751036C41008148 @default.
- W2735751036 hasConceptScore W2735751036C43214815 @default.
- W2735751036 hasConceptScore W2735751036C47822265 @default.
- W2735751036 hasConceptScore W2735751036C48044578 @default.
- W2735751036 hasConceptScore W2735751036C62520636 @default.
- W2735751036 hasConceptScore W2735751036C77088390 @default.
- W2735751036 hasLocation W27357510361 @default.
- W2735751036 hasOpenAccess W2735751036 @default.
- W2735751036 hasPrimaryLocation W27357510361 @default.
- W2735751036 hasRelatedWork W103981968 @default.
- W2735751036 hasRelatedWork W1485797890 @default.
- W2735751036 hasRelatedWork W168935419 @default.
- W2735751036 hasRelatedWork W1775504429 @default.
- W2735751036 hasRelatedWork W189104953 @default.
- W2735751036 hasRelatedWork W2074357856 @default.
- W2735751036 hasRelatedWork W2154497431 @default.
- W2735751036 hasRelatedWork W2246507626 @default.
- W2735751036 hasRelatedWork W2301548304 @default.
- W2735751036 hasRelatedWork W2560684958 @default.
- W2735751036 hasRelatedWork W2782993735 @default.
- W2735751036 hasRelatedWork W2883021513 @default.
- W2735751036 hasRelatedWork W2901743568 @default.
- W2735751036 hasRelatedWork W2971102824 @default.