Matches in SemOpenAlex for { <https://semopenalex.org/work/W2735887728> ?p ?o ?g. }
- W2735887728 endingPage "764" @default.
- W2735887728 startingPage "764" @default.
- W2735887728 abstract "Accurate PM2.5 concentration forecasting is crucial for protecting public health and atmospheric environment. However, the intermittent and unstable nature of PM2.5 concentration series makes its forecasting become a very difficult task. In order to improve the forecast accuracy of PM2.5 concentration, this paper proposes a hybrid model based on wavelet transform (WT), variational mode decomposition (VMD) and back propagation (BP) neural network optimized by differential evolution (DE) algorithm. Firstly, WT is employed to disassemble the PM2.5 concentration series into a number of subsets with different frequencies. Secondly, VMD is applied to decompose each subset into a set of variational modes (VMs). Thirdly, DE-BP model is utilized to forecast all the VMs. Fourthly, the forecast value of each subset is obtained through aggregating the forecast results of all the VMs obtained from VMD decomposition of this subset. Finally, the final forecast series of PM2.5 concentration is obtained by adding up the forecast values of all subsets. Two PM2.5 concentration series collected from Wuhan and Tianjin, respectively, located in China are used to test the effectiveness of the proposed model. The results demonstrate that the proposed model outperforms all the other considered models in this paper." @default.
- W2735887728 created "2017-07-21" @default.
- W2735887728 creator A5001079128 @default.
- W2735887728 creator A5009509812 @default.
- W2735887728 creator A5022012433 @default.
- W2735887728 creator A5024332203 @default.
- W2735887728 creator A5089273861 @default.
- W2735887728 date "2017-07-12" @default.
- W2735887728 modified "2023-10-17" @default.
- W2735887728 title "Day-Ahead PM2.5 Concentration Forecasting Using WT-VMD Based Decomposition Method and Back Propagation Neural Network Improved by Differential Evolution" @default.
- W2735887728 cites W1538856322 @default.
- W2735887728 cites W1595159159 @default.
- W2735887728 cites W1968840994 @default.
- W2735887728 cites W1973199293 @default.
- W2735887728 cites W1979373126 @default.
- W2735887728 cites W1982561564 @default.
- W2735887728 cites W1993526212 @default.
- W2735887728 cites W2000982976 @default.
- W2735887728 cites W2016199013 @default.
- W2735887728 cites W2029613065 @default.
- W2735887728 cites W2029963932 @default.
- W2735887728 cites W2041042214 @default.
- W2735887728 cites W2041471468 @default.
- W2735887728 cites W2044568947 @default.
- W2735887728 cites W2056494717 @default.
- W2735887728 cites W2058326618 @default.
- W2735887728 cites W2061232022 @default.
- W2735887728 cites W2069814665 @default.
- W2735887728 cites W2069977802 @default.
- W2735887728 cites W2076485554 @default.
- W2735887728 cites W2080651100 @default.
- W2735887728 cites W2089202914 @default.
- W2735887728 cites W2091214913 @default.
- W2735887728 cites W2094172643 @default.
- W2735887728 cites W2122623982 @default.
- W2735887728 cites W2130189616 @default.
- W2735887728 cites W2163882954 @default.
- W2735887728 cites W2222497113 @default.
- W2735887728 cites W2262434440 @default.
- W2735887728 cites W2282992258 @default.
- W2735887728 cites W2307767342 @default.
- W2735887728 cites W2329476579 @default.
- W2735887728 cites W2331700789 @default.
- W2735887728 cites W2476682407 @default.
- W2735887728 cites W2529846738 @default.
- W2735887728 cites W2565536624 @default.
- W2735887728 cites W2571217044 @default.
- W2735887728 cites W341735883 @default.
- W2735887728 cites W845424685 @default.
- W2735887728 doi "https://doi.org/10.3390/ijerph14070764" @default.
- W2735887728 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5551202" @default.
- W2735887728 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28704955" @default.
- W2735887728 hasPublicationYear "2017" @default.
- W2735887728 type Work @default.
- W2735887728 sameAs 2735887728 @default.
- W2735887728 citedByCount "25" @default.
- W2735887728 countsByYear W27358877282018 @default.
- W2735887728 countsByYear W27358877282019 @default.
- W2735887728 countsByYear W27358877282020 @default.
- W2735887728 countsByYear W27358877282021 @default.
- W2735887728 countsByYear W27358877282022 @default.
- W2735887728 countsByYear W27358877282023 @default.
- W2735887728 crossrefType "journal-article" @default.
- W2735887728 hasAuthorship W2735887728A5001079128 @default.
- W2735887728 hasAuthorship W2735887728A5009509812 @default.
- W2735887728 hasAuthorship W2735887728A5022012433 @default.
- W2735887728 hasAuthorship W2735887728A5024332203 @default.
- W2735887728 hasAuthorship W2735887728A5089273861 @default.
- W2735887728 hasBestOaLocation W27358877281 @default.
- W2735887728 hasConcept C105795698 @default.
- W2735887728 hasConcept C11413529 @default.
- W2735887728 hasConcept C124681953 @default.
- W2735887728 hasConcept C127313418 @default.
- W2735887728 hasConcept C127413603 @default.
- W2735887728 hasConcept C143724316 @default.
- W2735887728 hasConcept C146978453 @default.
- W2735887728 hasConcept C151730666 @default.
- W2735887728 hasConcept C154945302 @default.
- W2735887728 hasConcept C155032097 @default.
- W2735887728 hasConcept C177264268 @default.
- W2735887728 hasConcept C178790620 @default.
- W2735887728 hasConcept C185592680 @default.
- W2735887728 hasConcept C196216189 @default.
- W2735887728 hasConcept C199360897 @default.
- W2735887728 hasConcept C2778258933 @default.
- W2735887728 hasConcept C33923547 @default.
- W2735887728 hasConcept C41008148 @default.
- W2735887728 hasConcept C47432892 @default.
- W2735887728 hasConcept C50644808 @default.
- W2735887728 hasConcept C74750220 @default.
- W2735887728 hasConcept C93226319 @default.
- W2735887728 hasConceptScore W2735887728C105795698 @default.
- W2735887728 hasConceptScore W2735887728C11413529 @default.
- W2735887728 hasConceptScore W2735887728C124681953 @default.
- W2735887728 hasConceptScore W2735887728C127313418 @default.
- W2735887728 hasConceptScore W2735887728C127413603 @default.
- W2735887728 hasConceptScore W2735887728C143724316 @default.
- W2735887728 hasConceptScore W2735887728C146978453 @default.