Matches in SemOpenAlex for { <https://semopenalex.org/work/W2736073880> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2736073880 endingPage "1685" @default.
- W2736073880 startingPage "1685" @default.
- W2736073880 abstract "Most of the solid state ionic conductors typically exhibit high ionic conductivity for only one ion. Examples include yttria-stabilized zirconia (YSZ), rare earth oxide doped ceria, Sr- and Mg-doped LaGaO 3 (LSGM), etc. as oxygen ion conductors; Na-beta”-alumina, NaSICON as sodium ion conductors; LLZO, LiSICON as lithium ion conductors; CsH 2 PO 4 as a proton conductor, etc. Alkaline earth cerates and zirconates when doped with rare earth oxides become mixed proton and oxygen ion conductors. In addition some electronic conduction also prevails. Thus, Y-BaZrO 3 is an example of a single phase material that transports two ionic species; H + and O 2- . However, it is usually not possible to vary the conductivities for the two species independently; as the H 2 O content increases, the proton conductivity increases but the oxygen ion conductivity decreases. Multi-species transport in all of these systems can be given in terms of the gradients in electrochemical potentials of the individual species. The same equations can also be given in terms of the gradients in chemical potentials of neutral species if the assumption of local equilibrium is made. The assumption of local equilibrium implies that the electronic conductivity of the ionic conductors cannot be assumed to be identically (mathematically) zero. This is because such an assumption makes the local chemical potential of electrically neutral species indeterminate. Usually an assumption is made that transport of electrically charged species occurs only down their respective electrochemical potential gradients. This means if the transport is described using the Onsager formulation, the cross coefficients are zero (although there are some studies in which the cross coefficients are not assumed to be zero). The same equations, if written for the transport of the corresponding electrically neutral species, the cross coefficients are not zero. This means the origin of coupling lies in the electro-neutrality condition. In such a case, it is possible to write the Onsager coefficients in terms of the individual, partial conductivities. Multi-species ionic conductors containing multiple phases can also be envisioned. For example, one may fabricate a two phase, contiguous mixture of Y-BaZrO 3 and YSZ. When hydrated, all of the proton conduction will occur through the Y-BaZrO 3 phase and most of the oxygen ion conduction will occur through the YSZ phase. Other examples of multi-species multi-phase ionic conductors include Na-beta”-alumina + YSZ (made by vapor phase conversion of a-Al 2 O 3 + YSZ composite) and Na-rutile-beta-gallate + YSZ (made by vapor phase conversion of Ga 2 O 3 + YSZ composite). Many other multi-species, multi-phase ionic conductors can be envisioned. These materials differ from the single phase materials in that their transport properties can be designed, to an extent, by suitably designing the corresponding microstructure. In Na-beta”-alumina + YSZ, sodium ion transport occurs through the Na-beta”-alumina phase while oxygen ion transport occurs through the YSZ phase. If an electrochemical cell can made with different thermodynamic activities of sodium and oxygen at the two electrodes, one can induce transport of two ionic species. The general transport equations continue to be applicable and electro-neutrality also continues to remain applicable. The difference from single phase materials, however, is that there is a physical separation of ionic fluxes which is on the order of the microstructural details. The typical grain size in these materials is on the order of a few microns. This means, assuming a one dimensional transport, the regions that transport sodium ions are physically separated by a lateral distance on the order of microns from the regions that transport oxygen ions. In single phase Y-BaZrO 3 , by contrast, the regions that transport protons and oxygen ions are not physically separate (more than at an atomic level). The objective of this talk is to present similarities and differences between single phase and multi-phase ionic conductors capable of transporting two or more ionic species. Also, the objective is to discuss transport coefficients in these materials. Some preliminary experimental work conducted on some multi-phase materials will be discussed. Acknowledgements: This work was supported by the US Department of Energy under Grant Number DE-FG02-06ER46086 and by the National Science Foundation under Grant Number DMR-1407048." @default.
- W2736073880 created "2017-07-21" @default.
- W2736073880 creator A5041530739 @default.
- W2736073880 date "2017-09-01" @default.
- W2736073880 modified "2023-09-25" @default.
- W2736073880 title "(Invited) Multi-Species Electrochemical Transport through Multi-Phase Materials" @default.
- W2736073880 doi "https://doi.org/10.1149/ma2017-02/39/1685" @default.
- W2736073880 hasPublicationYear "2017" @default.
- W2736073880 type Work @default.
- W2736073880 sameAs 2736073880 @default.
- W2736073880 citedByCount "1" @default.
- W2736073880 countsByYear W27360738802022 @default.
- W2736073880 crossrefType "journal-article" @default.
- W2736073880 hasAuthorship W2736073880A5041530739 @default.
- W2736073880 hasConcept C109883240 @default.
- W2736073880 hasConcept C121332964 @default.
- W2736073880 hasConcept C125086356 @default.
- W2736073880 hasConcept C131540310 @default.
- W2736073880 hasConcept C138679309 @default.
- W2736073880 hasConcept C145148216 @default.
- W2736073880 hasConcept C147789679 @default.
- W2736073880 hasConcept C159467904 @default.
- W2736073880 hasConcept C159985019 @default.
- W2736073880 hasConcept C17525397 @default.
- W2736073880 hasConcept C178790620 @default.
- W2736073880 hasConcept C179104552 @default.
- W2736073880 hasConcept C185592680 @default.
- W2736073880 hasConcept C191897082 @default.
- W2736073880 hasConcept C192562407 @default.
- W2736073880 hasConcept C202374169 @default.
- W2736073880 hasConcept C2182769 @default.
- W2736073880 hasConcept C2779851234 @default.
- W2736073880 hasConcept C44280652 @default.
- W2736073880 hasConcept C49040817 @default.
- W2736073880 hasConcept C52859227 @default.
- W2736073880 hasConcept C54516573 @default.
- W2736073880 hasConcept C57863236 @default.
- W2736073880 hasConcept C62520636 @default.
- W2736073880 hasConcept C68801617 @default.
- W2736073880 hasConceptScore W2736073880C109883240 @default.
- W2736073880 hasConceptScore W2736073880C121332964 @default.
- W2736073880 hasConceptScore W2736073880C125086356 @default.
- W2736073880 hasConceptScore W2736073880C131540310 @default.
- W2736073880 hasConceptScore W2736073880C138679309 @default.
- W2736073880 hasConceptScore W2736073880C145148216 @default.
- W2736073880 hasConceptScore W2736073880C147789679 @default.
- W2736073880 hasConceptScore W2736073880C159467904 @default.
- W2736073880 hasConceptScore W2736073880C159985019 @default.
- W2736073880 hasConceptScore W2736073880C17525397 @default.
- W2736073880 hasConceptScore W2736073880C178790620 @default.
- W2736073880 hasConceptScore W2736073880C179104552 @default.
- W2736073880 hasConceptScore W2736073880C185592680 @default.
- W2736073880 hasConceptScore W2736073880C191897082 @default.
- W2736073880 hasConceptScore W2736073880C192562407 @default.
- W2736073880 hasConceptScore W2736073880C202374169 @default.
- W2736073880 hasConceptScore W2736073880C2182769 @default.
- W2736073880 hasConceptScore W2736073880C2779851234 @default.
- W2736073880 hasConceptScore W2736073880C44280652 @default.
- W2736073880 hasConceptScore W2736073880C49040817 @default.
- W2736073880 hasConceptScore W2736073880C52859227 @default.
- W2736073880 hasConceptScore W2736073880C54516573 @default.
- W2736073880 hasConceptScore W2736073880C57863236 @default.
- W2736073880 hasConceptScore W2736073880C62520636 @default.
- W2736073880 hasConceptScore W2736073880C68801617 @default.
- W2736073880 hasIssue "39" @default.
- W2736073880 hasLocation W27360738801 @default.
- W2736073880 hasOpenAccess W2736073880 @default.
- W2736073880 hasPrimaryLocation W27360738801 @default.
- W2736073880 hasRelatedWork W1975466606 @default.
- W2736073880 hasRelatedWork W1982166220 @default.
- W2736073880 hasRelatedWork W2028571256 @default.
- W2736073880 hasRelatedWork W2038178620 @default.
- W2736073880 hasRelatedWork W2071684136 @default.
- W2736073880 hasRelatedWork W2094867978 @default.
- W2736073880 hasRelatedWork W2108010544 @default.
- W2736073880 hasRelatedWork W2150559568 @default.
- W2736073880 hasRelatedWork W2804322928 @default.
- W2736073880 hasRelatedWork W2980299465 @default.
- W2736073880 hasVolume "MA2017-02" @default.
- W2736073880 isParatext "false" @default.
- W2736073880 isRetracted "false" @default.
- W2736073880 magId "2736073880" @default.
- W2736073880 workType "article" @default.