Matches in SemOpenAlex for { <https://semopenalex.org/work/W2736114313> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2736114313 endingPage "101" @default.
- W2736114313 startingPage "85" @default.
- W2736114313 abstract "As a threat for transportation system, traffic crashes have a wide range of social consequences for governments. Traffic crashes are increasing in developing countries and Iran as a developing country is not immune from this risk. There are several researches in the literature to predict traffic crash severity based on artificial neural networks (ANNs), support vector machines and decision trees. This paper attempts to investigate the crash injury severity of rural roads by using a hybrid clustering and classification approach to compare the performance of classification algorithms before and after applying the clustering. In this paper, a novel rule-based genetic algorithm (GA) is proposed to predict crash injury severity, which is evaluated by performance criteria in comparison with classification algorithms like ANN. The results obtained from analysis of 13,673 crashes (5600 property damage, 778 fatal crashes, 4690 slight injuries and 2605 severe injuries) on rural roads in Tehran Province of Iran during 2011–2013 revealed that the proposed GA method outperforms other classification algorithms based on classification metrics like precision (86%), recall (88%) and accuracy (87%). Moreover, the proposed GA method has the highest level of interpretation, is easy to understand and provides feedback to analysts." @default.
- W2736114313 created "2017-07-21" @default.
- W2736114313 creator A5009662178 @default.
- W2736114313 creator A5051731594 @default.
- W2736114313 creator A5061257637 @default.
- W2736114313 date "2017-07-10" @default.
- W2736114313 modified "2023-09-24" @default.
- W2736114313 title "A hybrid clustering and classification approach for predicting crash injury severity on rural roads" @default.
- W2736114313 cites W1500890010 @default.
- W2736114313 cites W1970559658 @default.
- W2736114313 cites W1987193935 @default.
- W2736114313 cites W1998443375 @default.
- W2736114313 cites W2001589546 @default.
- W2736114313 cites W2007019606 @default.
- W2736114313 cites W2022714541 @default.
- W2736114313 cites W2061855265 @default.
- W2736114313 cites W2063763346 @default.
- W2736114313 cites W2090563475 @default.
- W2736114313 cites W2096059947 @default.
- W2736114313 cites W2099816914 @default.
- W2736114313 cites W2100372437 @default.
- W2736114313 cites W2111368672 @default.
- W2736114313 cites W2118020653 @default.
- W2736114313 cites W2120529703 @default.
- W2736114313 cites W2133990480 @default.
- W2736114313 cites W2148785320 @default.
- W2736114313 cites W2149257935 @default.
- W2736114313 cites W2156909104 @default.
- W2736114313 cites W2169212315 @default.
- W2736114313 cites W2337415635 @default.
- W2736114313 cites W2366582931 @default.
- W2736114313 cites W4233014035 @default.
- W2736114313 cites W4300886904 @default.
- W2736114313 doi "https://doi.org/10.1080/17457300.2017.1341933" @default.
- W2736114313 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28691578" @default.
- W2736114313 hasPublicationYear "2017" @default.
- W2736114313 type Work @default.
- W2736114313 sameAs 2736114313 @default.
- W2736114313 citedByCount "8" @default.
- W2736114313 countsByYear W27361143132019 @default.
- W2736114313 countsByYear W27361143132020 @default.
- W2736114313 countsByYear W27361143132022 @default.
- W2736114313 countsByYear W27361143132023 @default.
- W2736114313 crossrefType "journal-article" @default.
- W2736114313 hasAuthorship W2736114313A5009662178 @default.
- W2736114313 hasAuthorship W2736114313A5051731594 @default.
- W2736114313 hasAuthorship W2736114313A5061257637 @default.
- W2736114313 hasConcept C119857082 @default.
- W2736114313 hasConcept C12267149 @default.
- W2736114313 hasConcept C124101348 @default.
- W2736114313 hasConcept C154945302 @default.
- W2736114313 hasConcept C183469790 @default.
- W2736114313 hasConcept C199360897 @default.
- W2736114313 hasConcept C3017944768 @default.
- W2736114313 hasConcept C41008148 @default.
- W2736114313 hasConcept C50644808 @default.
- W2736114313 hasConcept C545542383 @default.
- W2736114313 hasConcept C71924100 @default.
- W2736114313 hasConcept C73555534 @default.
- W2736114313 hasConceptScore W2736114313C119857082 @default.
- W2736114313 hasConceptScore W2736114313C12267149 @default.
- W2736114313 hasConceptScore W2736114313C124101348 @default.
- W2736114313 hasConceptScore W2736114313C154945302 @default.
- W2736114313 hasConceptScore W2736114313C183469790 @default.
- W2736114313 hasConceptScore W2736114313C199360897 @default.
- W2736114313 hasConceptScore W2736114313C3017944768 @default.
- W2736114313 hasConceptScore W2736114313C41008148 @default.
- W2736114313 hasConceptScore W2736114313C50644808 @default.
- W2736114313 hasConceptScore W2736114313C545542383 @default.
- W2736114313 hasConceptScore W2736114313C71924100 @default.
- W2736114313 hasConceptScore W2736114313C73555534 @default.
- W2736114313 hasIssue "1" @default.
- W2736114313 hasLocation W27361143131 @default.
- W2736114313 hasLocation W27361143132 @default.
- W2736114313 hasOpenAccess W2736114313 @default.
- W2736114313 hasPrimaryLocation W27361143131 @default.
- W2736114313 hasRelatedWork W1996541855 @default.
- W2736114313 hasRelatedWork W2355927362 @default.
- W2736114313 hasRelatedWork W2937883736 @default.
- W2736114313 hasRelatedWork W2961085424 @default.
- W2736114313 hasRelatedWork W2992977501 @default.
- W2736114313 hasRelatedWork W3195168932 @default.
- W2736114313 hasRelatedWork W4206175771 @default.
- W2736114313 hasRelatedWork W4306674287 @default.
- W2736114313 hasRelatedWork W579836342 @default.
- W2736114313 hasRelatedWork W4224009465 @default.
- W2736114313 hasVolume "25" @default.
- W2736114313 isParatext "false" @default.
- W2736114313 isRetracted "false" @default.
- W2736114313 magId "2736114313" @default.
- W2736114313 workType "article" @default.