Matches in SemOpenAlex for { <https://semopenalex.org/work/W2736149070> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2736149070 endingPage "541" @default.
- W2736149070 startingPage "526" @default.
- W2736149070 abstract "ABSTRACTThis article presents a new tool wear multiclass detection method. Based on the experimental data, tool wear classes are defined using the Douglas–Peucker algorithm. Logical analysis of data (LAD) is then used as machine learning, pattern recognition technique for double objectives of detecting the present tool wear class based on the recent sensors' readings of the time-dependent machining variables, and deriving new information about the intercorrelation between the tool wear and the machining variables, by doing pattern analysis. LAD is a data-driven technique which relies on combinatorial optimization and pattern recognition. The accuracy of LAD is compared to that of an artificial neural network (ANN) technique, since ANN is the most familiar machine learning technique. The proposed method is applied to experimental data those are gathered under various machining conditions. The results show that the proposed method detects the tool wear class correctly and with high accuracy." @default.
- W2736149070 created "2017-07-21" @default.
- W2736149070 creator A5019315257 @default.
- W2736149070 creator A5028753134 @default.
- W2736149070 creator A5044492083 @default.
- W2736149070 creator A5077082085 @default.
- W2736149070 date "2017-07-10" @default.
- W2736149070 modified "2023-10-18" @default.
- W2736149070 title "Cutting tool wear detection using multiclass logical analysis of data" @default.
- W2736149070 cites W1699440763 @default.
- W2736149070 cites W1967133285 @default.
- W2736149070 cites W1978268052 @default.
- W2736149070 cites W1981934656 @default.
- W2736149070 cites W1987032634 @default.
- W2736149070 cites W1987074680 @default.
- W2736149070 cites W1991355554 @default.
- W2736149070 cites W1993266708 @default.
- W2736149070 cites W1997049108 @default.
- W2736149070 cites W1999314995 @default.
- W2736149070 cites W2001731263 @default.
- W2736149070 cites W2004381809 @default.
- W2736149070 cites W2024646731 @default.
- W2736149070 cites W2034341843 @default.
- W2736149070 cites W2037492531 @default.
- W2736149070 cites W2042252797 @default.
- W2736149070 cites W2062149427 @default.
- W2736149070 cites W2063813235 @default.
- W2736149070 cites W2071340990 @default.
- W2736149070 cites W2075759257 @default.
- W2736149070 cites W2100110464 @default.
- W2736149070 cites W2133990480 @default.
- W2736149070 cites W2164141749 @default.
- W2736149070 cites W2171037402 @default.
- W2736149070 cites W3021909058 @default.
- W2736149070 cites W39098511 @default.
- W2736149070 cites W2117678067 @default.
- W2736149070 doi "https://doi.org/10.1080/10910344.2017.1336177" @default.
- W2736149070 hasPublicationYear "2017" @default.
- W2736149070 type Work @default.
- W2736149070 sameAs 2736149070 @default.
- W2736149070 citedByCount "9" @default.
- W2736149070 countsByYear W27361490702018 @default.
- W2736149070 countsByYear W27361490702019 @default.
- W2736149070 countsByYear W27361490702020 @default.
- W2736149070 countsByYear W27361490702021 @default.
- W2736149070 countsByYear W27361490702022 @default.
- W2736149070 countsByYear W27361490702023 @default.
- W2736149070 crossrefType "journal-article" @default.
- W2736149070 hasAuthorship W2736149070A5019315257 @default.
- W2736149070 hasAuthorship W2736149070A5028753134 @default.
- W2736149070 hasAuthorship W2736149070A5044492083 @default.
- W2736149070 hasAuthorship W2736149070A5077082085 @default.
- W2736149070 hasConcept C127413603 @default.
- W2736149070 hasConcept C154945302 @default.
- W2736149070 hasConcept C199639397 @default.
- W2736149070 hasConcept C2776450708 @default.
- W2736149070 hasConcept C2780383046 @default.
- W2736149070 hasConcept C41008148 @default.
- W2736149070 hasConcept C523214423 @default.
- W2736149070 hasConcept C78519656 @default.
- W2736149070 hasConceptScore W2736149070C127413603 @default.
- W2736149070 hasConceptScore W2736149070C154945302 @default.
- W2736149070 hasConceptScore W2736149070C199639397 @default.
- W2736149070 hasConceptScore W2736149070C2776450708 @default.
- W2736149070 hasConceptScore W2736149070C2780383046 @default.
- W2736149070 hasConceptScore W2736149070C41008148 @default.
- W2736149070 hasConceptScore W2736149070C523214423 @default.
- W2736149070 hasConceptScore W2736149070C78519656 @default.
- W2736149070 hasIssue "4" @default.
- W2736149070 hasLocation W27361490701 @default.
- W2736149070 hasOpenAccess W2736149070 @default.
- W2736149070 hasPrimaryLocation W27361490701 @default.
- W2736149070 hasRelatedWork W2018496888 @default.
- W2736149070 hasRelatedWork W2097267532 @default.
- W2736149070 hasRelatedWork W2349276566 @default.
- W2736149070 hasRelatedWork W2365271457 @default.
- W2736149070 hasRelatedWork W2549102533 @default.
- W2736149070 hasRelatedWork W2965166879 @default.
- W2736149070 hasRelatedWork W2992762952 @default.
- W2736149070 hasRelatedWork W3096965322 @default.
- W2736149070 hasRelatedWork W4210933612 @default.
- W2736149070 hasRelatedWork W2234044006 @default.
- W2736149070 hasVolume "21" @default.
- W2736149070 isParatext "false" @default.
- W2736149070 isRetracted "false" @default.
- W2736149070 magId "2736149070" @default.
- W2736149070 workType "article" @default.