Matches in SemOpenAlex for { <https://semopenalex.org/work/W2736333670> ?p ?o ?g. }
- W2736333670 endingPage "869" @default.
- W2736333670 startingPage "855" @default.
- W2736333670 abstract "The number of patients with Alzheimer's disease is increasing rapidly every year. Scholars often use computer vision and machine learning methods to develop an automatic diagnosis system.In this study, we developed a novel machine learning system that can make diagnoses automatically from brain magnetic resonance images.First, the brain imaging was processed, including skull stripping and spatial normalization. Second, one axial slice was selected from the volumetric image, and stationary wavelet entropy (SWE) was done to extract the texture features. Third, a single-hidden-layer neural network was used as the classifier. Finally, a predator-prey particle swarm optimization was proposed to train the weights and biases of the classifier.Our method used 4-level decomposition and yielded 13 SWE features. The classification yielded an overall accuracy of 92.73±1.03%, a sensitivity of 92.69±1.29%, and a specificity of 92.78±1.51%. The area under the curve is 0.95±0.02. Additionally, this method only cost 0.88 s to identify a subject in online stage, after its volumetric image is preprocessed.In terms of classification performance, our method performs better than 10 state-of-the-art approaches and the performance of human observers. Therefore, this proposed method is effective in the detection of Alzheimer's disease." @default.
- W2736333670 created "2017-07-31" @default.
- W2736333670 creator A5007987858 @default.
- W2736333670 creator A5011354002 @default.
- W2736333670 creator A5018597687 @default.
- W2736333670 creator A5042556183 @default.
- W2736333670 creator A5047918353 @default.
- W2736333670 creator A5048826252 @default.
- W2736333670 creator A5049785774 @default.
- W2736333670 creator A5053886291 @default.
- W2736333670 creator A5072509956 @default.
- W2736333670 creator A5090965728 @default.
- W2736333670 date "2018-09-11" @default.
- W2736333670 modified "2023-10-04" @default.
- W2736333670 title "Multivariate Approach for Alzheimer’s Disease Detection Using Stationary Wavelet Entropy and Predator-Prey Particle Swarm Optimization" @default.
- W2736333670 cites W1475705016 @default.
- W2736333670 cites W1482255099 @default.
- W2736333670 cites W1581627189 @default.
- W2736333670 cites W1933512202 @default.
- W2736333670 cites W1949503316 @default.
- W2736333670 cites W1993193417 @default.
- W2736333670 cites W1997359550 @default.
- W2736333670 cites W2014418634 @default.
- W2736333670 cites W2014802425 @default.
- W2736333670 cites W2049586412 @default.
- W2736333670 cites W2058120003 @default.
- W2736333670 cites W2083474188 @default.
- W2736333670 cites W2089045143 @default.
- W2736333670 cites W2135028448 @default.
- W2736333670 cites W2135429159 @default.
- W2736333670 cites W2148601182 @default.
- W2736333670 cites W2149250984 @default.
- W2736333670 cites W2159503988 @default.
- W2736333670 cites W2175649320 @default.
- W2736333670 cites W2194999895 @default.
- W2736333670 cites W2209545160 @default.
- W2736333670 cites W2215061739 @default.
- W2736333670 cites W2249666447 @default.
- W2736333670 cites W2256522464 @default.
- W2736333670 cites W2270588982 @default.
- W2736333670 cites W2277307048 @default.
- W2736333670 cites W2288677245 @default.
- W2736333670 cites W2344997942 @default.
- W2736333670 cites W2345463153 @default.
- W2736333670 cites W2345590181 @default.
- W2736333670 cites W2406786877 @default.
- W2736333670 cites W2409206932 @default.
- W2736333670 cites W2470863390 @default.
- W2736333670 cites W2478785661 @default.
- W2736333670 cites W2509876630 @default.
- W2736333670 cites W2517871893 @default.
- W2736333670 cites W2520000989 @default.
- W2736333670 cites W2521624561 @default.
- W2736333670 cites W2523947784 @default.
- W2736333670 cites W2531086080 @default.
- W2736333670 cites W2534373732 @default.
- W2736333670 cites W2536350874 @default.
- W2736333670 cites W2545046665 @default.
- W2736333670 cites W2545908773 @default.
- W2736333670 cites W2554211866 @default.
- W2736333670 cites W2556247010 @default.
- W2736333670 cites W2560235512 @default.
- W2736333670 cites W2561648699 @default.
- W2736333670 cites W2576428100 @default.
- W2736333670 cites W2581082771 @default.
- W2736333670 cites W2586795830 @default.
- W2736333670 cites W2591620035 @default.
- W2736333670 cites W281036081 @default.
- W2736333670 cites W4248700461 @default.
- W2736333670 cites W596427627 @default.
- W2736333670 cites W748368181 @default.
- W2736333670 cites W801706466 @default.
- W2736333670 doi "https://doi.org/10.3233/jad-170069" @default.
- W2736333670 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28731432" @default.
- W2736333670 hasPublicationYear "2018" @default.
- W2736333670 type Work @default.
- W2736333670 sameAs 2736333670 @default.
- W2736333670 citedByCount "119" @default.
- W2736333670 countsByYear W27363336702017 @default.
- W2736333670 countsByYear W27363336702018 @default.
- W2736333670 countsByYear W27363336702019 @default.
- W2736333670 countsByYear W27363336702020 @default.
- W2736333670 countsByYear W27363336702021 @default.
- W2736333670 countsByYear W27363336702022 @default.
- W2736333670 countsByYear W27363336702023 @default.
- W2736333670 crossrefType "journal-article" @default.
- W2736333670 hasAuthorship W2736333670A5007987858 @default.
- W2736333670 hasAuthorship W2736333670A5011354002 @default.
- W2736333670 hasAuthorship W2736333670A5018597687 @default.
- W2736333670 hasAuthorship W2736333670A5042556183 @default.
- W2736333670 hasAuthorship W2736333670A5047918353 @default.
- W2736333670 hasAuthorship W2736333670A5048826252 @default.
- W2736333670 hasAuthorship W2736333670A5049785774 @default.
- W2736333670 hasAuthorship W2736333670A5053886291 @default.
- W2736333670 hasAuthorship W2736333670A5072509956 @default.
- W2736333670 hasAuthorship W2736333670A5090965728 @default.
- W2736333670 hasConcept C106301342 @default.
- W2736333670 hasConcept C119857082 @default.