Matches in SemOpenAlex for { <https://semopenalex.org/work/W2736458510> ?p ?o ?g. }
- W2736458510 endingPage "230" @default.
- W2736458510 startingPage "223" @default.
- W2736458510 abstract "Human hand pose recovery (HPR) in depth images is usually conducted by constructing mappings between 2D depth images and 3D hand poses. It is a challenging task since the feature spaces of 2D images and 3D poses are different. Therefore, a large number of labeled data is required for training, especially for popular frameworks such as deep learning. In this paper, we propose an HPR method with weak supervision. It is based on neural network and domain adaptation is introduced to enhance the trained model. To achieve domain adaptation, we propose low-rank alignment, which aligns the testing samples to the distribution of labeled samples. In this process, autoencoders are used to extract 2D image features and low-rank representation is used to describe this feature space. Therefore, the proposed method is named as Domain Adaptation with Low-Rank Alignment (DALA). In this way, we obtain a robust and non-linear mapping from 2D images to 3D poses. Experiments are conducted on two challenging benchmark datasets MSRA and ICVL. Both the results on a single dataset and across datasets show the outstanding performance of DALA." @default.
- W2736458510 created "2017-07-31" @default.
- W2736458510 creator A5006266231 @default.
- W2736458510 creator A5026237422 @default.
- W2736458510 creator A5068425936 @default.
- W2736458510 creator A5073347679 @default.
- W2736458510 creator A5079626454 @default.
- W2736458510 date "2018-01-01" @default.
- W2736458510 modified "2023-10-14" @default.
- W2736458510 title "Domain adaptation with low-rank alignment for weakly supervised hand pose recovery" @default.
- W2736458510 cites W1967086152 @default.
- W2736458510 cites W1972702299 @default.
- W2736458510 cites W1978046055 @default.
- W2736458510 cites W1983321048 @default.
- W2736458510 cites W1997201895 @default.
- W2736458510 cites W2004080111 @default.
- W2736458510 cites W2029257328 @default.
- W2736458510 cites W2043884319 @default.
- W2736458510 cites W2049538695 @default.
- W2736458510 cites W2052103500 @default.
- W2736458510 cites W2057354418 @default.
- W2736458510 cites W2061879449 @default.
- W2736458510 cites W2075156252 @default.
- W2736458510 cites W2081500871 @default.
- W2736458510 cites W2089997377 @default.
- W2736458510 cites W2092560274 @default.
- W2736458510 cites W2097924042 @default.
- W2736458510 cites W2123503110 @default.
- W2736458510 cites W2169738563 @default.
- W2736458510 cites W2189540548 @default.
- W2736458510 cites W2226984459 @default.
- W2736458510 cites W2288560581 @default.
- W2736458510 cites W2559975580 @default.
- W2736458510 cites W2586451513 @default.
- W2736458510 cites W2589422216 @default.
- W2736458510 cites W2618534374 @default.
- W2736458510 cites W4231109964 @default.
- W2736458510 cites W4242361954 @default.
- W2736458510 doi "https://doi.org/10.1016/j.sigpro.2017.07.032" @default.
- W2736458510 hasPublicationYear "2018" @default.
- W2736458510 type Work @default.
- W2736458510 sameAs 2736458510 @default.
- W2736458510 citedByCount "6" @default.
- W2736458510 countsByYear W27364585102018 @default.
- W2736458510 countsByYear W27364585102020 @default.
- W2736458510 countsByYear W27364585102021 @default.
- W2736458510 countsByYear W27364585102022 @default.
- W2736458510 countsByYear W27364585102023 @default.
- W2736458510 crossrefType "journal-article" @default.
- W2736458510 hasAuthorship W2736458510A5006266231 @default.
- W2736458510 hasAuthorship W2736458510A5026237422 @default.
- W2736458510 hasAuthorship W2736458510A5068425936 @default.
- W2736458510 hasAuthorship W2736458510A5073347679 @default.
- W2736458510 hasAuthorship W2736458510A5079626454 @default.
- W2736458510 hasConcept C111919701 @default.
- W2736458510 hasConcept C114614502 @default.
- W2736458510 hasConcept C115961682 @default.
- W2736458510 hasConcept C119857082 @default.
- W2736458510 hasConcept C120665830 @default.
- W2736458510 hasConcept C121332964 @default.
- W2736458510 hasConcept C13280743 @default.
- W2736458510 hasConcept C134306372 @default.
- W2736458510 hasConcept C138885662 @default.
- W2736458510 hasConcept C139807058 @default.
- W2736458510 hasConcept C153180895 @default.
- W2736458510 hasConcept C154945302 @default.
- W2736458510 hasConcept C164226766 @default.
- W2736458510 hasConcept C17744445 @default.
- W2736458510 hasConcept C185798385 @default.
- W2736458510 hasConcept C199539241 @default.
- W2736458510 hasConcept C205649164 @default.
- W2736458510 hasConcept C2776359362 @default.
- W2736458510 hasConcept C2776401178 @default.
- W2736458510 hasConcept C2776434776 @default.
- W2736458510 hasConcept C31972630 @default.
- W2736458510 hasConcept C33923547 @default.
- W2736458510 hasConcept C36503486 @default.
- W2736458510 hasConcept C41008148 @default.
- W2736458510 hasConcept C41895202 @default.
- W2736458510 hasConcept C52622490 @default.
- W2736458510 hasConcept C94625758 @default.
- W2736458510 hasConcept C95623464 @default.
- W2736458510 hasConcept C98045186 @default.
- W2736458510 hasConceptScore W2736458510C111919701 @default.
- W2736458510 hasConceptScore W2736458510C114614502 @default.
- W2736458510 hasConceptScore W2736458510C115961682 @default.
- W2736458510 hasConceptScore W2736458510C119857082 @default.
- W2736458510 hasConceptScore W2736458510C120665830 @default.
- W2736458510 hasConceptScore W2736458510C121332964 @default.
- W2736458510 hasConceptScore W2736458510C13280743 @default.
- W2736458510 hasConceptScore W2736458510C134306372 @default.
- W2736458510 hasConceptScore W2736458510C138885662 @default.
- W2736458510 hasConceptScore W2736458510C139807058 @default.
- W2736458510 hasConceptScore W2736458510C153180895 @default.
- W2736458510 hasConceptScore W2736458510C154945302 @default.
- W2736458510 hasConceptScore W2736458510C164226766 @default.
- W2736458510 hasConceptScore W2736458510C17744445 @default.
- W2736458510 hasConceptScore W2736458510C185798385 @default.