Matches in SemOpenAlex for { <https://semopenalex.org/work/W2736519005> ?p ?o ?g. }
- W2736519005 endingPage "181" @default.
- W2736519005 startingPage "159" @default.
- W2736519005 abstract "The properties and accuracy of the linearized version of the fully dispersive and nonlinear wave model developed in Yates and Benoit (2015) and Raoult et al. (2016) are analyzed for both flat and variable bottom bathymetries. This model considers only a single layer of fluid and uses a basis of orthogonal Chebyshev polynomials to project the vertical structure of the potential. This approach results in an exponential convergence rate with the maximum degree of the Chebyshev polynomial, denoted NT, while only first- and second-order derivatives in space need to be evaluated. For the constant water depth case, the linear dispersion relation of the model is derived analytically, and expressions are established for NT ranging from 2 to 15. The analysis shows a rapid increase in accuracy in the deep water range with increasing NT. For instance, the relative error in the calculated wave celerity (in comparison with Stokes’ analytical solution) remains smaller than 2.5% for deep water cases with kh up to 100 using NT≥9 (k and h are the representative wavenumber and water depth, respectively). The wave kinematics, vertical profiles of the horizontal and vertical orbital velocities, converge to the Stokes profiles for kh up to 60 when using a sufficiently high value of NT. The vertically-averaged relative errors of the horizontal and vertical velocities remain below 6% and 3%, respectively, for kh up to 60 when using NT≥11. The presented model shows better dispersive properties in deep water than several high-order Boussinesq-type models. For variable bottom bathymetries, the shoaling properties of the model are studied numerically, exhibiting good agreement with results from Stokes linear theory in the case of mild bottom slopes, using a sufficiently high value of NT with respect to the offshore relative water depth. For an offshore water depth of kh=10 (i.e. more than 3 times the deep water limit), accurate wave heights in shallow water (kh=0.25) are obtained with NT=6 (or higher). Finally, the linear version of the model is validated with comparisons to analytical solutions of the reflection and transmission coefficients of regular waves over Roseau-type bathymetric profiles. Two bottom profiles are considered, including one with a steep slope, whose maximum value reaches about 1:0.7 (i.e. an angle of about 54.9 deg.). Using NT=7, small differences (<0.4%) with the analytical solution are observed for the four considered cases, confirming the ability of the linear model to represent accurately the effects of steep bottom gradients on wave propagation dynamics." @default.
- W2736519005 created "2017-07-31" @default.
- W2736519005 creator A5051353465 @default.
- W2736519005 creator A5063244700 @default.
- W2736519005 creator A5088068232 @default.
- W2736519005 date "2017-11-01" @default.
- W2736519005 modified "2023-09-29" @default.
- W2736519005 title "Analysis of the linear version of a highly dispersive potential water wave model using a spectral approach in the vertical" @default.
- W2736519005 cites W124326915 @default.
- W2736519005 cites W1573653535 @default.
- W2736519005 cites W1583123453 @default.
- W2736519005 cites W1924196109 @default.
- W2736519005 cites W1964336257 @default.
- W2736519005 cites W1968014473 @default.
- W2736519005 cites W1971448716 @default.
- W2736519005 cites W1972343036 @default.
- W2736519005 cites W1974887662 @default.
- W2736519005 cites W1977607363 @default.
- W2736519005 cites W1985314671 @default.
- W2736519005 cites W1985908696 @default.
- W2736519005 cites W1989891199 @default.
- W2736519005 cites W2000115717 @default.
- W2736519005 cites W2020407402 @default.
- W2736519005 cites W2023553466 @default.
- W2736519005 cites W2024776244 @default.
- W2736519005 cites W2030725319 @default.
- W2736519005 cites W2042835745 @default.
- W2736519005 cites W2043449087 @default.
- W2736519005 cites W2053752148 @default.
- W2736519005 cites W2061097196 @default.
- W2736519005 cites W2063537120 @default.
- W2736519005 cites W2063547054 @default.
- W2736519005 cites W2086390169 @default.
- W2736519005 cites W2088978709 @default.
- W2736519005 cites W2090885565 @default.
- W2736519005 cites W2108202098 @default.
- W2736519005 cites W2123200542 @default.
- W2736519005 cites W2133533073 @default.
- W2736519005 cites W2140188738 @default.
- W2736519005 cites W2147480329 @default.
- W2736519005 cites W2148003806 @default.
- W2736519005 cites W2156533673 @default.
- W2736519005 cites W2159536421 @default.
- W2736519005 cites W2167713439 @default.
- W2736519005 cites W2168312404 @default.
- W2736519005 cites W2170350320 @default.
- W2736519005 cites W2345165127 @default.
- W2736519005 cites W2471665966 @default.
- W2736519005 cites W3100928662 @default.
- W2736519005 cites W4235178662 @default.
- W2736519005 cites W4245261017 @default.
- W2736519005 cites W4376848369 @default.
- W2736519005 doi "https://doi.org/10.1016/j.wavemoti.2017.07.002" @default.
- W2736519005 hasPublicationYear "2017" @default.
- W2736519005 type Work @default.
- W2736519005 sameAs 2736519005 @default.
- W2736519005 citedByCount "11" @default.
- W2736519005 countsByYear W27365190052018 @default.
- W2736519005 countsByYear W27365190052019 @default.
- W2736519005 countsByYear W27365190052021 @default.
- W2736519005 countsByYear W27365190052022 @default.
- W2736519005 crossrefType "journal-article" @default.
- W2736519005 hasAuthorship W2736519005A5051353465 @default.
- W2736519005 hasAuthorship W2736519005A5063244700 @default.
- W2736519005 hasAuthorship W2736519005A5088068232 @default.
- W2736519005 hasConcept C120665830 @default.
- W2736519005 hasConcept C121130766 @default.
- W2736519005 hasConcept C121332964 @default.
- W2736519005 hasConcept C129785596 @default.
- W2736519005 hasConcept C134306372 @default.
- W2736519005 hasConcept C151376022 @default.
- W2736519005 hasConcept C158622935 @default.
- W2736519005 hasConcept C177562468 @default.
- W2736519005 hasConcept C202579712 @default.
- W2736519005 hasConcept C2524010 @default.
- W2736519005 hasConcept C33923547 @default.
- W2736519005 hasConcept C62520636 @default.
- W2736519005 hasConcept C90119067 @default.
- W2736519005 hasConceptScore W2736519005C120665830 @default.
- W2736519005 hasConceptScore W2736519005C121130766 @default.
- W2736519005 hasConceptScore W2736519005C121332964 @default.
- W2736519005 hasConceptScore W2736519005C129785596 @default.
- W2736519005 hasConceptScore W2736519005C134306372 @default.
- W2736519005 hasConceptScore W2736519005C151376022 @default.
- W2736519005 hasConceptScore W2736519005C158622935 @default.
- W2736519005 hasConceptScore W2736519005C177562468 @default.
- W2736519005 hasConceptScore W2736519005C202579712 @default.
- W2736519005 hasConceptScore W2736519005C2524010 @default.
- W2736519005 hasConceptScore W2736519005C33923547 @default.
- W2736519005 hasConceptScore W2736519005C62520636 @default.
- W2736519005 hasConceptScore W2736519005C90119067 @default.
- W2736519005 hasLocation W27365190051 @default.
- W2736519005 hasLocation W27365190052 @default.
- W2736519005 hasLocation W27365190053 @default.
- W2736519005 hasOpenAccess W2736519005 @default.
- W2736519005 hasPrimaryLocation W27365190051 @default.
- W2736519005 hasRelatedWork W1979386543 @default.
- W2736519005 hasRelatedWork W1993246898 @default.