Matches in SemOpenAlex for { <https://semopenalex.org/work/W2736544312> ?p ?o ?g. }
- W2736544312 endingPage "587.e10" @default.
- W2736544312 startingPage "587.e1" @default.
- W2736544312 abstract "BackgroundCell-free RNA in amniotic fluid supernatant reflects developmental changes in gene expression in the living fetus, which includes genes that are specific to the central nervous system. Although it has been previously shown that central nervous system–specific transcripts are present in amniotic fluid supernatant, it is not known whether changes in the amniotic fluid supernatant transcriptome reflect the specific pathophysiologic condition of fetal central nervous system disorders. In myelomeningocele, there is open communication between the central nervous system and amniotic fluid.ObjectivesThe purpose of this study was to identify molecular pathophysiologic changes and novel disease mechanisms that are specific to myelomeningocele by the analysis of amniotic fluid supernatant cell-free RNA in fetuses with open myelomeningocele.Study DesignAmniotic fluid supernatant was collected from 10 pregnant women at the time of the open myelomeningocele repair in the second trimester (24.5±1.0 weeks); 10 archived amniotic fluid supernatant from sex and gestational age–matched euploid fetuses without myelomeningocele were used as controls (20.9±0.9 weeks). Differentially regulated gene expression patterns were analyzed with the use of human genome expression arrays.ResultsFetuses with myelomeningocele had 284 differentially regulated genes (176 up- and 108 down-regulated) in amniotic fluid supernatant. Known genes that were associated with myelomeningocele (PRICKLE2, GLI3, RAB23, HES1, FOLR1) and novel dysregulated genes were identified in association with neurodevelopment and neuronal regeneration (up-regulated, GAP43 and ZEB1) or axonal growth and guidance (down-regulated, ACAP1). Pathway analysis demonstrated a significant contribution of inflammation to disease and a broad influence of Wnt signaling pathways (Wnt1, Wnt5A, ITPR1).ConclusionTranscriptomic analyses of living fetuses with myelomeningocele with the use of amniotic fluid supernatant cell-free RNA demonstrated differential regulation of specific genes and molecular pathways relevant to this central nervous system disorder, which resulted in a new understanding of pathophysiologic changes. The data also suggested the importance of pathways that involve secondary disease, such as inflammation, in myelomeningocele. These newly identified pathways may lead to hypotheses that can test novel therapeutic targets as adjuncts to fetal surgical repair. Cell-free RNA in amniotic fluid supernatant reflects developmental changes in gene expression in the living fetus, which includes genes that are specific to the central nervous system. Although it has been previously shown that central nervous system–specific transcripts are present in amniotic fluid supernatant, it is not known whether changes in the amniotic fluid supernatant transcriptome reflect the specific pathophysiologic condition of fetal central nervous system disorders. In myelomeningocele, there is open communication between the central nervous system and amniotic fluid. The purpose of this study was to identify molecular pathophysiologic changes and novel disease mechanisms that are specific to myelomeningocele by the analysis of amniotic fluid supernatant cell-free RNA in fetuses with open myelomeningocele. Amniotic fluid supernatant was collected from 10 pregnant women at the time of the open myelomeningocele repair in the second trimester (24.5±1.0 weeks); 10 archived amniotic fluid supernatant from sex and gestational age–matched euploid fetuses without myelomeningocele were used as controls (20.9±0.9 weeks). Differentially regulated gene expression patterns were analyzed with the use of human genome expression arrays. Fetuses with myelomeningocele had 284 differentially regulated genes (176 up- and 108 down-regulated) in amniotic fluid supernatant. Known genes that were associated with myelomeningocele (PRICKLE2, GLI3, RAB23, HES1, FOLR1) and novel dysregulated genes were identified in association with neurodevelopment and neuronal regeneration (up-regulated, GAP43 and ZEB1) or axonal growth and guidance (down-regulated, ACAP1). Pathway analysis demonstrated a significant contribution of inflammation to disease and a broad influence of Wnt signaling pathways (Wnt1, Wnt5A, ITPR1). Transcriptomic analyses of living fetuses with myelomeningocele with the use of amniotic fluid supernatant cell-free RNA demonstrated differential regulation of specific genes and molecular pathways relevant to this central nervous system disorder, which resulted in a new understanding of pathophysiologic changes. The data also suggested the importance of pathways that involve secondary disease, such as inflammation, in myelomeningocele. These newly identified pathways may lead to hypotheses that can test novel therapeutic targets as adjuncts to fetal surgical repair." @default.
- W2736544312 created "2017-07-31" @default.
- W2736544312 creator A5001790737 @default.
- W2736544312 creator A5010315323 @default.
- W2736544312 creator A5012298082 @default.
- W2736544312 creator A5043527194 @default.
- W2736544312 creator A5046484309 @default.
- W2736544312 creator A5070419671 @default.
- W2736544312 creator A5071045570 @default.
- W2736544312 creator A5074883462 @default.
- W2736544312 creator A5081715355 @default.
- W2736544312 date "2017-11-01" @default.
- W2736544312 modified "2023-09-27" @default.
- W2736544312 title "Amniotic fluid transcriptomics reflects novel disease mechanisms in fetuses with myelomeningocele" @default.
- W2736544312 cites W1525863215 @default.
- W2736544312 cites W1914126304 @default.
- W2736544312 cites W1977958433 @default.
- W2736544312 cites W1978202528 @default.
- W2736544312 cites W1983061009 @default.
- W2736544312 cites W1984849799 @default.
- W2736544312 cites W1986421234 @default.
- W2736544312 cites W1990765924 @default.
- W2736544312 cites W1993976205 @default.
- W2736544312 cites W2001687806 @default.
- W2736544312 cites W2008478427 @default.
- W2736544312 cites W2016505915 @default.
- W2736544312 cites W2025215355 @default.
- W2736544312 cites W2025909613 @default.
- W2736544312 cites W2027647323 @default.
- W2736544312 cites W2037232726 @default.
- W2736544312 cites W2044230889 @default.
- W2736544312 cites W2045461469 @default.
- W2736544312 cites W2049812401 @default.
- W2736544312 cites W2068147981 @default.
- W2736544312 cites W2071103930 @default.
- W2736544312 cites W2083757217 @default.
- W2736544312 cites W2084520793 @default.
- W2736544312 cites W2086611394 @default.
- W2736544312 cites W2089202189 @default.
- W2736544312 cites W2091077369 @default.
- W2736544312 cites W2092677984 @default.
- W2736544312 cites W2094063872 @default.
- W2736544312 cites W2097889062 @default.
- W2736544312 cites W2101266783 @default.
- W2736544312 cites W2107665951 @default.
- W2736544312 cites W2121604817 @default.
- W2736544312 cites W2130558974 @default.
- W2736544312 cites W2134198313 @default.
- W2736544312 cites W2140085675 @default.
- W2736544312 cites W2141008218 @default.
- W2736544312 cites W2141975829 @default.
- W2736544312 cites W2160697532 @default.
- W2736544312 cites W2162143298 @default.
- W2736544312 cites W2164683872 @default.
- W2736544312 cites W2283008781 @default.
- W2736544312 cites W2319354969 @default.
- W2736544312 cites W2325847542 @default.
- W2736544312 cites W2469624628 @default.
- W2736544312 cites W2535073367 @default.
- W2736544312 doi "https://doi.org/10.1016/j.ajog.2017.07.022" @default.
- W2736544312 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5671344" @default.
- W2736544312 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28735706" @default.
- W2736544312 hasPublicationYear "2017" @default.
- W2736544312 type Work @default.
- W2736544312 sameAs 2736544312 @default.
- W2736544312 citedByCount "18" @default.
- W2736544312 countsByYear W27365443122018 @default.
- W2736544312 countsByYear W27365443122019 @default.
- W2736544312 countsByYear W27365443122020 @default.
- W2736544312 countsByYear W27365443122021 @default.
- W2736544312 countsByYear W27365443122022 @default.
- W2736544312 crossrefType "journal-article" @default.
- W2736544312 hasAuthorship W2736544312A5001790737 @default.
- W2736544312 hasAuthorship W2736544312A5010315323 @default.
- W2736544312 hasAuthorship W2736544312A5012298082 @default.
- W2736544312 hasAuthorship W2736544312A5043527194 @default.
- W2736544312 hasAuthorship W2736544312A5046484309 @default.
- W2736544312 hasAuthorship W2736544312A5070419671 @default.
- W2736544312 hasAuthorship W2736544312A5071045570 @default.
- W2736544312 hasAuthorship W2736544312A5074883462 @default.
- W2736544312 hasAuthorship W2736544312A5081715355 @default.
- W2736544312 hasBestOaLocation W27365443121 @default.
- W2736544312 hasConcept C10162356 @default.
- W2736544312 hasConcept C104317684 @default.
- W2736544312 hasConcept C126322002 @default.
- W2736544312 hasConcept C142724271 @default.
- W2736544312 hasConcept C150194340 @default.
- W2736544312 hasConcept C162317418 @default.
- W2736544312 hasConcept C16685009 @default.
- W2736544312 hasConcept C172680121 @default.
- W2736544312 hasConcept C2777966818 @default.
- W2736544312 hasConcept C2778194526 @default.
- W2736544312 hasConcept C2778258057 @default.
- W2736544312 hasConcept C2779234561 @default.
- W2736544312 hasConcept C529278444 @default.
- W2736544312 hasConcept C54355233 @default.
- W2736544312 hasConcept C60644358 @default.
- W2736544312 hasConcept C71924100 @default.