Matches in SemOpenAlex for { <https://semopenalex.org/work/W2736583246> ?p ?o ?g. }
- W2736583246 abstract "For a drug to be approved for human use, its safety and efficacy need to be evidenced through clinical trials. At present, patient recruitment is a major bottleneck in conducting clinical trials. Pharma and contract research organisations (CRO) are actively looking into optimisation of different aspects of patient recruitment. One of the avenues to approach this business problem is to improve the quality of selection of investigators/sites at the start of a trial. This study builds upon previous work that used Grammatical Evolution (GE) to evolve classification models to predict the future patient enrolment performance of investigators/sites considered for a trial. Selection of investigators/sites, depending on the business context, could benefit from the use of either especially conservative or more liberal predictive models. To address this business need, decision-tree type classifiers were evolved utilising different fitness functions to drive GE. The functions compared were classical accuracy, balanced accuracy and F-measure with different values of parameter beta. The issue of models’ generalisability was addressed by introduction of a validation procedure. The predictive power of the resultant GE-evolved models on the test set was compared with performance of a range of machine learning algorithms widely used for classification. The results of the study demonstrate that flexibility of GE induced classification models can be used to address business needs in the area of patient recruitment in clinical trials." @default.
- W2736583246 created "2017-07-31" @default.
- W2736583246 creator A5001619292 @default.
- W2736583246 creator A5025033491 @default.
- W2736583246 creator A5058552787 @default.
- W2736583246 creator A5081309660 @default.
- W2736583246 creator A5085107807 @default.
- W2736583246 date "2017-07-21" @default.
- W2736583246 modified "2023-09-27" @default.
- W2736583246 title "Alternative Fitness Functions in the Development of Models for Prediction of Patient Recruitment in Multicentre Clinical Trials" @default.
- W2736583246 cites W172260869 @default.
- W2736583246 cites W1975580029 @default.
- W2736583246 cites W1983770999 @default.
- W2736583246 cites W2116825089 @default.
- W2736583246 cites W2155653793 @default.
- W2736583246 cites W2158698691 @default.
- W2736583246 cites W2359559890 @default.
- W2736583246 cites W4235721129 @default.
- W2736583246 cites W429766147 @default.
- W2736583246 cites W591905249 @default.
- W2736583246 doi "https://doi.org/10.1007/978-3-319-55702-1_50" @default.
- W2736583246 hasPublicationYear "2017" @default.
- W2736583246 type Work @default.
- W2736583246 sameAs 2736583246 @default.
- W2736583246 citedByCount "1" @default.
- W2736583246 countsByYear W27365832462018 @default.
- W2736583246 crossrefType "book-chapter" @default.
- W2736583246 hasAuthorship W2736583246A5001619292 @default.
- W2736583246 hasAuthorship W2736583246A5025033491 @default.
- W2736583246 hasAuthorship W2736583246A5058552787 @default.
- W2736583246 hasAuthorship W2736583246A5081309660 @default.
- W2736583246 hasAuthorship W2736583246A5085107807 @default.
- W2736583246 hasConcept C105795698 @default.
- W2736583246 hasConcept C111472728 @default.
- W2736583246 hasConcept C112930515 @default.
- W2736583246 hasConcept C119857082 @default.
- W2736583246 hasConcept C138885662 @default.
- W2736583246 hasConcept C142724271 @default.
- W2736583246 hasConcept C149635348 @default.
- W2736583246 hasConcept C151730666 @default.
- W2736583246 hasConcept C154945302 @default.
- W2736583246 hasConcept C177264268 @default.
- W2736583246 hasConcept C19527891 @default.
- W2736583246 hasConcept C199360897 @default.
- W2736583246 hasConcept C2778136018 @default.
- W2736583246 hasConcept C2779343474 @default.
- W2736583246 hasConcept C2779530757 @default.
- W2736583246 hasConcept C2780513914 @default.
- W2736583246 hasConcept C2780598303 @default.
- W2736583246 hasConcept C33923547 @default.
- W2736583246 hasConcept C41008148 @default.
- W2736583246 hasConcept C45804977 @default.
- W2736583246 hasConcept C535046627 @default.
- W2736583246 hasConcept C71924100 @default.
- W2736583246 hasConcept C81917197 @default.
- W2736583246 hasConcept C84525736 @default.
- W2736583246 hasConcept C86803240 @default.
- W2736583246 hasConceptScore W2736583246C105795698 @default.
- W2736583246 hasConceptScore W2736583246C111472728 @default.
- W2736583246 hasConceptScore W2736583246C112930515 @default.
- W2736583246 hasConceptScore W2736583246C119857082 @default.
- W2736583246 hasConceptScore W2736583246C138885662 @default.
- W2736583246 hasConceptScore W2736583246C142724271 @default.
- W2736583246 hasConceptScore W2736583246C149635348 @default.
- W2736583246 hasConceptScore W2736583246C151730666 @default.
- W2736583246 hasConceptScore W2736583246C154945302 @default.
- W2736583246 hasConceptScore W2736583246C177264268 @default.
- W2736583246 hasConceptScore W2736583246C19527891 @default.
- W2736583246 hasConceptScore W2736583246C199360897 @default.
- W2736583246 hasConceptScore W2736583246C2778136018 @default.
- W2736583246 hasConceptScore W2736583246C2779343474 @default.
- W2736583246 hasConceptScore W2736583246C2779530757 @default.
- W2736583246 hasConceptScore W2736583246C2780513914 @default.
- W2736583246 hasConceptScore W2736583246C2780598303 @default.
- W2736583246 hasConceptScore W2736583246C33923547 @default.
- W2736583246 hasConceptScore W2736583246C41008148 @default.
- W2736583246 hasConceptScore W2736583246C45804977 @default.
- W2736583246 hasConceptScore W2736583246C535046627 @default.
- W2736583246 hasConceptScore W2736583246C71924100 @default.
- W2736583246 hasConceptScore W2736583246C81917197 @default.
- W2736583246 hasConceptScore W2736583246C84525736 @default.
- W2736583246 hasConceptScore W2736583246C86803240 @default.
- W2736583246 hasLocation W27365832461 @default.
- W2736583246 hasOpenAccess W2736583246 @default.
- W2736583246 hasPrimaryLocation W27365832461 @default.
- W2736583246 hasRelatedWork W2244666291 @default.
- W2736583246 hasRelatedWork W2359559890 @default.
- W2736583246 hasRelatedWork W2527581393 @default.
- W2736583246 hasRelatedWork W2535150711 @default.
- W2736583246 hasRelatedWork W2791409969 @default.
- W2736583246 hasRelatedWork W2895683742 @default.
- W2736583246 hasRelatedWork W2950465608 @default.
- W2736583246 hasRelatedWork W2951479040 @default.
- W2736583246 hasRelatedWork W2960525299 @default.
- W2736583246 hasRelatedWork W2963686689 @default.
- W2736583246 hasRelatedWork W2972605147 @default.
- W2736583246 hasRelatedWork W3000340225 @default.
- W2736583246 hasRelatedWork W3007813020 @default.
- W2736583246 hasRelatedWork W3012412585 @default.
- W2736583246 hasRelatedWork W3037301183 @default.