Matches in SemOpenAlex for { <https://semopenalex.org/work/W2736601785> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W2736601785 abstract "Critical traffic problems such as accidents and traffic congestion require the development of new transportation systems. Research in perceptual and human factors assessment is needed for relevant and correct display of this information for maximal road traffic safety as well as optimal driver comfort. One of the solutions to prevent accidents is to provide information on the surrounding environment of the driver. The development and deployment of cooperative vehicular safety systems undeniably require a combination of dedicated wireless communications, computer vision, and AR technologies as the building blocks of cooperative safety systems. Augmented Reality Head-Up Display (AR-HUD) can facilitate a new form of dialogue between the vehicle and the driver; and enhance ITS by superimposing surrounding traffic information on the users view and keep drivers view on roads. In this paper, we propose a fast deep-learning-based object detection approaches for identifying and recognizing road obstacles types, as well as interpreting and predicting complex traffic situations. A single Convolutional Neural Network (CNN) predicts region of interest and class probabilities directly from full images in one evaluation. We also investigated potential costs and benefits of using dynamic conformal AR cues in improving driving safety. A new AR-HUD approach to create real-time interactive traffic animations was introduced in terms of types of obstacle, rules for placement and visibility, and projection of these on an in-vehicle display." @default.
- W2736601785 created "2017-07-31" @default.
- W2736601785 creator A5008043054 @default.
- W2736601785 creator A5015126563 @default.
- W2736601785 creator A5050958236 @default.
- W2736601785 date "2017-06-01" @default.
- W2736601785 modified "2023-09-26" @default.
- W2736601785 title "In-vehicle cooperative driver information systems" @default.
- W2736601785 cites W1491903915 @default.
- W2736601785 cites W1536680647 @default.
- W2736601785 cites W1973338659 @default.
- W2736601785 cites W2032371029 @default.
- W2736601785 cites W2102605133 @default.
- W2736601785 cites W2155893237 @default.
- W2736601785 cites W2179352600 @default.
- W2736601785 cites W2279657753 @default.
- W2736601785 doi "https://doi.org/10.1109/iwcmc.2017.7986319" @default.
- W2736601785 hasPublicationYear "2017" @default.
- W2736601785 type Work @default.
- W2736601785 sameAs 2736601785 @default.
- W2736601785 citedByCount "2" @default.
- W2736601785 countsByYear W27366017852021 @default.
- W2736601785 countsByYear W27366017852022 @default.
- W2736601785 crossrefType "proceedings-article" @default.
- W2736601785 hasAuthorship W2736601785A5008043054 @default.
- W2736601785 hasAuthorship W2736601785A5015126563 @default.
- W2736601785 hasAuthorship W2736601785A5050958236 @default.
- W2736601785 hasConcept C107457646 @default.
- W2736601785 hasConcept C127413603 @default.
- W2736601785 hasConcept C154945302 @default.
- W2736601785 hasConcept C171146098 @default.
- W2736601785 hasConcept C178802073 @default.
- W2736601785 hasConcept C22212356 @default.
- W2736601785 hasConcept C41008148 @default.
- W2736601785 hasConcept C87833898 @default.
- W2736601785 hasConceptScore W2736601785C107457646 @default.
- W2736601785 hasConceptScore W2736601785C127413603 @default.
- W2736601785 hasConceptScore W2736601785C154945302 @default.
- W2736601785 hasConceptScore W2736601785C171146098 @default.
- W2736601785 hasConceptScore W2736601785C178802073 @default.
- W2736601785 hasConceptScore W2736601785C22212356 @default.
- W2736601785 hasConceptScore W2736601785C41008148 @default.
- W2736601785 hasConceptScore W2736601785C87833898 @default.
- W2736601785 hasLocation W27366017851 @default.
- W2736601785 hasOpenAccess W2736601785 @default.
- W2736601785 hasPrimaryLocation W27366017851 @default.
- W2736601785 hasRelatedWork W110311947 @default.
- W2736601785 hasRelatedWork W1536570095 @default.
- W2736601785 hasRelatedWork W2045456578 @default.
- W2736601785 hasRelatedWork W2076610045 @default.
- W2736601785 hasRelatedWork W2278205256 @default.
- W2736601785 hasRelatedWork W2883555950 @default.
- W2736601785 hasRelatedWork W2918883224 @default.
- W2736601785 hasRelatedWork W3204394973 @default.
- W2736601785 hasRelatedWork W68053931 @default.
- W2736601785 hasRelatedWork W3106945349 @default.
- W2736601785 isParatext "false" @default.
- W2736601785 isRetracted "false" @default.
- W2736601785 magId "2736601785" @default.
- W2736601785 workType "article" @default.