Matches in SemOpenAlex for { <https://semopenalex.org/work/W2736624076> ?p ?o ?g. }
- W2736624076 endingPage "13991" @default.
- W2736624076 startingPage "13978" @default.
- W2736624076 abstract "Most off-the-shelf subspace learning methods directly calculate the statistical characteristics of the original input images, while ignoring different contributions of different image components. In fact, to extract efficient features for image analysis, the noise or trivial structure in images should have little contribution and the intrinsic structure should be uncovered. Motivated by this observation, we propose a new subspace learning method, namely, discriminant manifold learning via sparse coding (DML_SC) for robust feature extraction. Specifically, we first decompose each input image into several components via dictionary learning, and then regroup the components into a more important part (MIP) and a less important part (LIP). The MIP can be considered as the clean portion of the image residing on a low-dimensional submanifold, while the LIP as noise or trivial structure within the image. Finally, the MIP and LIP are incorporated into manifold learning to learn a desired discriminative subspace. The proposed method is general for both cases with and without class labels, hence generating supervised DML_SC (SDML_SC) and unsupervised DML_SC (UDML_SC). Experimental results on four benchmark data sets demonstrate the efficacy of the proposed DML_SCs on both image recognition and clustering tasks." @default.
- W2736624076 created "2017-07-31" @default.
- W2736624076 creator A5005691932 @default.
- W2736624076 creator A5038516431 @default.
- W2736624076 creator A5045734633 @default.
- W2736624076 creator A5078143614 @default.
- W2736624076 date "2017-01-01" @default.
- W2736624076 modified "2023-10-17" @default.
- W2736624076 title "Discriminant Manifold Learning via Sparse Coding for Robust Feature Extraction" @default.
- W2736624076 cites W1880070323 @default.
- W2736624076 cites W1902027874 @default.
- W2736624076 cites W1916598143 @default.
- W2736624076 cites W1963882359 @default.
- W2736624076 cites W1978357561 @default.
- W2736624076 cites W1981038076 @default.
- W2736624076 cites W1982405594 @default.
- W2736624076 cites W1982659613 @default.
- W2736624076 cites W1992001674 @default.
- W2736624076 cites W1997201895 @default.
- W2736624076 cites W2010099812 @default.
- W2736624076 cites W2015872666 @default.
- W2736624076 cites W2023102539 @default.
- W2736624076 cites W2024687090 @default.
- W2736624076 cites W2032768707 @default.
- W2736624076 cites W2033419168 @default.
- W2736624076 cites W2041064868 @default.
- W2736624076 cites W2052575990 @default.
- W2736624076 cites W2053186076 @default.
- W2736624076 cites W2056935845 @default.
- W2736624076 cites W2070127246 @default.
- W2736624076 cites W2080523761 @default.
- W2736624076 cites W2098693229 @default.
- W2736624076 cites W2105055468 @default.
- W2736624076 cites W2105464873 @default.
- W2736624076 cites W2108119513 @default.
- W2736624076 cites W2108767394 @default.
- W2736624076 cites W2117553576 @default.
- W2736624076 cites W2120100419 @default.
- W2736624076 cites W2123115309 @default.
- W2736624076 cites W2123921160 @default.
- W2736624076 cites W2129812935 @default.
- W2736624076 cites W2130187411 @default.
- W2736624076 cites W2133893370 @default.
- W2736624076 cites W2145962650 @default.
- W2736624076 cites W2149251874 @default.
- W2736624076 cites W2155759509 @default.
- W2736624076 cites W2160547390 @default.
- W2736624076 cites W2242065997 @default.
- W2736624076 cites W2293561010 @default.
- W2736624076 cites W2338257905 @default.
- W2736624076 cites W2403965311 @default.
- W2736624076 cites W2500506338 @default.
- W2736624076 cites W3022380717 @default.
- W2736624076 cites W3148981562 @default.
- W2736624076 cites W384497013 @default.
- W2736624076 doi "https://doi.org/10.1109/access.2017.2730281" @default.
- W2736624076 hasPublicationYear "2017" @default.
- W2736624076 type Work @default.
- W2736624076 sameAs 2736624076 @default.
- W2736624076 citedByCount "10" @default.
- W2736624076 countsByYear W27366240762019 @default.
- W2736624076 countsByYear W27366240762020 @default.
- W2736624076 countsByYear W27366240762021 @default.
- W2736624076 countsByYear W27366240762023 @default.
- W2736624076 crossrefType "journal-article" @default.
- W2736624076 hasAuthorship W2736624076A5005691932 @default.
- W2736624076 hasAuthorship W2736624076A5038516431 @default.
- W2736624076 hasAuthorship W2736624076A5045734633 @default.
- W2736624076 hasAuthorship W2736624076A5078143614 @default.
- W2736624076 hasBestOaLocation W27366240761 @default.
- W2736624076 hasConcept C151876577 @default.
- W2736624076 hasConcept C153180895 @default.
- W2736624076 hasConcept C154945302 @default.
- W2736624076 hasConcept C41008148 @default.
- W2736624076 hasConcept C52622490 @default.
- W2736624076 hasConcept C69738355 @default.
- W2736624076 hasConcept C70518039 @default.
- W2736624076 hasConcept C77637269 @default.
- W2736624076 hasConcept C78397625 @default.
- W2736624076 hasConceptScore W2736624076C151876577 @default.
- W2736624076 hasConceptScore W2736624076C153180895 @default.
- W2736624076 hasConceptScore W2736624076C154945302 @default.
- W2736624076 hasConceptScore W2736624076C41008148 @default.
- W2736624076 hasConceptScore W2736624076C52622490 @default.
- W2736624076 hasConceptScore W2736624076C69738355 @default.
- W2736624076 hasConceptScore W2736624076C70518039 @default.
- W2736624076 hasConceptScore W2736624076C77637269 @default.
- W2736624076 hasConceptScore W2736624076C78397625 @default.
- W2736624076 hasFunder F4320320955 @default.
- W2736624076 hasFunder F4320321001 @default.
- W2736624076 hasLocation W27366240761 @default.
- W2736624076 hasOpenAccess W2736624076 @default.
- W2736624076 hasPrimaryLocation W27366240761 @default.
- W2736624076 hasRelatedWork W1484231397 @default.
- W2736624076 hasRelatedWork W1976402786 @default.
- W2736624076 hasRelatedWork W1986248657 @default.
- W2736624076 hasRelatedWork W2014080430 @default.
- W2736624076 hasRelatedWork W2104912729 @default.