Matches in SemOpenAlex for { <https://semopenalex.org/work/W2736697700> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2736697700 abstract "We study sum-of-squares representations of symmetric univariate real matrix polynomials that are positive semidefinite along the real line. We give a new proof of the fact that every positive semidefinite univariate matrix polynomial of size $ntimes n$ can be written as a sum of squares $M=Q^TQ$, where $Q$ has size $(n+1)times n$, which was recently proved by Blekherman-Plaumann-Sinn-Vinzant. Our new approach using the theory of quadratic forms allows us to prove the conjecture made by these authors that these minimal representations $M=Q^TQ$ are generically in one-to-one correspondence with the representations of the nonnegative univariate polynomial $det(M)$ as sums of two squares. In parallel, we will use our methods to prove the more elementary hermitian analogue that every hermitian univariate matrix polynomial $M$ that is positive semidefinite along the real line, is a square, which is known as the matrix Fejer-Riesz Theorem." @default.
- W2736697700 created "2017-07-31" @default.
- W2736697700 creator A5039084906 @default.
- W2736697700 creator A5068824685 @default.
- W2736697700 date "2017-07-26" @default.
- W2736697700 modified "2023-09-27" @default.
- W2736697700 title "Positive Semidefinite Univariate Matrix Polynomials" @default.
- W2736697700 cites W2004332394 @default.
- W2736697700 cites W2025893050 @default.
- W2736697700 cites W2094628998 @default.
- W2736697700 cites W2116245898 @default.
- W2736697700 cites W2149339058 @default.
- W2736697700 hasPublicationYear "2017" @default.
- W2736697700 type Work @default.
- W2736697700 sameAs 2736697700 @default.
- W2736697700 citedByCount "0" @default.
- W2736697700 crossrefType "posted-content" @default.
- W2736697700 hasAuthorship W2736697700A5039084906 @default.
- W2736697700 hasAuthorship W2736697700A5068824685 @default.
- W2736697700 hasConcept C101044782 @default.
- W2736697700 hasConcept C101901036 @default.
- W2736697700 hasConcept C105795698 @default.
- W2736697700 hasConcept C106487976 @default.
- W2736697700 hasConcept C114614502 @default.
- W2736697700 hasConcept C118615104 @default.
- W2736697700 hasConcept C121332964 @default.
- W2736697700 hasConcept C126255220 @default.
- W2736697700 hasConcept C126352355 @default.
- W2736697700 hasConcept C134306372 @default.
- W2736697700 hasConcept C158693339 @default.
- W2736697700 hasConcept C159985019 @default.
- W2736697700 hasConcept C161584116 @default.
- W2736697700 hasConcept C192562407 @default.
- W2736697700 hasConcept C199163554 @default.
- W2736697700 hasConcept C202444582 @default.
- W2736697700 hasConcept C33923547 @default.
- W2736697700 hasConcept C49712288 @default.
- W2736697700 hasConcept C49847556 @default.
- W2736697700 hasConcept C54848796 @default.
- W2736697700 hasConcept C62520636 @default.
- W2736697700 hasConcept C69044650 @default.
- W2736697700 hasConcept C90119067 @default.
- W2736697700 hasConcept C94940 @default.
- W2736697700 hasConceptScore W2736697700C101044782 @default.
- W2736697700 hasConceptScore W2736697700C101901036 @default.
- W2736697700 hasConceptScore W2736697700C105795698 @default.
- W2736697700 hasConceptScore W2736697700C106487976 @default.
- W2736697700 hasConceptScore W2736697700C114614502 @default.
- W2736697700 hasConceptScore W2736697700C118615104 @default.
- W2736697700 hasConceptScore W2736697700C121332964 @default.
- W2736697700 hasConceptScore W2736697700C126255220 @default.
- W2736697700 hasConceptScore W2736697700C126352355 @default.
- W2736697700 hasConceptScore W2736697700C134306372 @default.
- W2736697700 hasConceptScore W2736697700C158693339 @default.
- W2736697700 hasConceptScore W2736697700C159985019 @default.
- W2736697700 hasConceptScore W2736697700C161584116 @default.
- W2736697700 hasConceptScore W2736697700C192562407 @default.
- W2736697700 hasConceptScore W2736697700C199163554 @default.
- W2736697700 hasConceptScore W2736697700C202444582 @default.
- W2736697700 hasConceptScore W2736697700C33923547 @default.
- W2736697700 hasConceptScore W2736697700C49712288 @default.
- W2736697700 hasConceptScore W2736697700C49847556 @default.
- W2736697700 hasConceptScore W2736697700C54848796 @default.
- W2736697700 hasConceptScore W2736697700C62520636 @default.
- W2736697700 hasConceptScore W2736697700C69044650 @default.
- W2736697700 hasConceptScore W2736697700C90119067 @default.
- W2736697700 hasConceptScore W2736697700C94940 @default.
- W2736697700 hasLocation W27366977001 @default.
- W2736697700 hasOpenAccess W2736697700 @default.
- W2736697700 hasPrimaryLocation W27366977001 @default.
- W2736697700 hasRelatedWork W1721021809 @default.
- W2736697700 hasRelatedWork W1975555074 @default.
- W2736697700 hasRelatedWork W1979958697 @default.
- W2736697700 hasRelatedWork W2016231645 @default.
- W2736697700 hasRelatedWork W2054604651 @default.
- W2736697700 hasRelatedWork W2072273382 @default.
- W2736697700 hasRelatedWork W2101922712 @default.
- W2736697700 hasRelatedWork W2139527022 @default.
- W2736697700 hasRelatedWork W2170693128 @default.
- W2736697700 hasRelatedWork W2345805953 @default.
- W2736697700 hasRelatedWork W2484608730 @default.
- W2736697700 hasRelatedWork W2495589274 @default.
- W2736697700 hasRelatedWork W2497586533 @default.
- W2736697700 hasRelatedWork W2744182242 @default.
- W2736697700 hasRelatedWork W2953117979 @default.
- W2736697700 hasRelatedWork W2962993525 @default.
- W2736697700 hasRelatedWork W2995574308 @default.
- W2736697700 hasRelatedWork W3015179079 @default.
- W2736697700 hasRelatedWork W3093693219 @default.
- W2736697700 hasRelatedWork W3122484208 @default.
- W2736697700 isParatext "false" @default.
- W2736697700 isRetracted "false" @default.
- W2736697700 magId "2736697700" @default.
- W2736697700 workType "article" @default.