Matches in SemOpenAlex for { <https://semopenalex.org/work/W2736703388> ?p ?o ?g. }
- W2736703388 abstract "Propelled partly by the Materials Genome Initiative, and partly by the algorithmic developments and the resounding successes of data-driven efforts in other domains, informatics strategies are beginning to take shape within materials science. These approaches lead to surrogate machine learning models that enable rapid predictions based purely on past data rather than by direct experimentation or by computations/simulations in which fundamental equations are explicitly solved. Data-centric informatics methods are becoming useful to determine material properties that are hard to measure or compute using traditional methods--due to the cost, time or effort involved--but for which reliable data either already exists or can be generated for at least a subset of the critical cases. Predictions are typically interpolative, involving fingerprinting a material numerically first, and then following a mapping (established via a learning algorithm) between the fingerprint and the property of interest. Fingerprints may be of many types and scales, as dictated by the application domain and needs. Predictions may also be extrapolative--extending into new materials spaces--provided prediction uncertainties are properly taken into account. This article attempts to provide an overview of some of the recent successful data-driven materials informatics strategies undertaken in the last decade, and identifies some challenges the community is facing and those that should be overcome in the near future." @default.
- W2736703388 created "2017-07-31" @default.
- W2736703388 creator A5003850818 @default.
- W2736703388 creator A5018939520 @default.
- W2736703388 creator A5031952600 @default.
- W2736703388 creator A5032715041 @default.
- W2736703388 creator A5075051974 @default.
- W2736703388 date "2017-07-23" @default.
- W2736703388 modified "2023-09-25" @default.
- W2736703388 title "Machine Learning and Materials Informatics: Recent Applications and Prospects" @default.
- W2736703388 cites W1505168701 @default.
- W2736703388 cites W1545048062 @default.
- W2736703388 cites W1568537411 @default.
- W2736703388 cites W1584846110 @default.
- W2736703388 cites W1597841398 @default.
- W2736703388 cites W1678620623 @default.
- W2736703388 cites W1800437104 @default.
- W2736703388 cites W1865667476 @default.
- W2736703388 cites W1901616594 @default.
- W2736703388 cites W1965192594 @default.
- W2736703388 cites W1972135189 @default.
- W2736703388 cites W1977739742 @default.
- W2736703388 cites W1978183953 @default.
- W2736703388 cites W1979769287 @default.
- W2736703388 cites W1982598895 @default.
- W2736703388 cites W1984087004 @default.
- W2736703388 cites W2000957843 @default.
- W2736703388 cites W2010785223 @default.
- W2736703388 cites W2019903457 @default.
- W2736703388 cites W2020786104 @default.
- W2736703388 cites W2025444507 @default.
- W2736703388 cites W2025882616 @default.
- W2736703388 cites W2029413789 @default.
- W2736703388 cites W2037566781 @default.
- W2736703388 cites W2051801258 @default.
- W2736703388 cites W2055974394 @default.
- W2736703388 cites W2061333371 @default.
- W2736703388 cites W2069034916 @default.
- W2736703388 cites W2074616700 @default.
- W2736703388 cites W2083415705 @default.
- W2736703388 cites W2085607286 @default.
- W2736703388 cites W2087292325 @default.
- W2736703388 cites W2089843324 @default.
- W2736703388 cites W2097489306 @default.
- W2736703388 cites W2104489082 @default.
- W2736703388 cites W2115003579 @default.
- W2736703388 cites W2115096312 @default.
- W2736703388 cites W2128873947 @default.
- W2736703388 cites W2163272368 @default.
- W2736703388 cites W2164524421 @default.
- W2736703388 cites W2215223440 @default.
- W2736703388 cites W2225949634 @default.
- W2736703388 cites W2258702411 @default.
- W2736703388 cites W2261108203 @default.
- W2736703388 cites W2281127889 @default.
- W2736703388 cites W2291908932 @default.
- W2736703388 cites W2313966941 @default.
- W2736703388 cites W2315793378 @default.
- W2736703388 cites W2329258563 @default.
- W2736703388 cites W2336382837 @default.
- W2736703388 cites W2337110853 @default.
- W2736703388 cites W2337496963 @default.
- W2736703388 cites W2337529739 @default.
- W2736703388 cites W2343462019 @default.
- W2736703388 cites W2344188443 @default.
- W2736703388 cites W2345653852 @default.
- W2736703388 cites W2352719088 @default.
- W2736703388 cites W2356584815 @default.
- W2736703388 cites W2372859909 @default.
- W2736703388 cites W2396196938 @default.
- W2736703388 cites W2415372084 @default.
- W2736703388 cites W2471982001 @default.
- W2736703388 cites W2475256989 @default.
- W2736703388 cites W2476592117 @default.
- W2736703388 cites W2490901606 @default.
- W2736703388 cites W2498941985 @default.
- W2736703388 cites W2503343131 @default.
- W2736703388 cites W2520500207 @default.
- W2736703388 cites W2527749992 @default.
- W2736703388 cites W2529958128 @default.
- W2736703388 cites W2555683692 @default.
- W2736703388 cites W2564078846 @default.
- W2736703388 cites W2566642125 @default.
- W2736703388 cites W2593838212 @default.
- W2736703388 cites W2594250440 @default.
- W2736703388 cites W2600236415 @default.
- W2736703388 cites W2603482245 @default.
- W2736703388 cites W2608722029 @default.
- W2736703388 cites W26088913 @default.
- W2736703388 cites W2616136793 @default.
- W2736703388 cites W2617604238 @default.
- W2736703388 cites W2762836614 @default.
- W2736703388 cites W2949081185 @default.
- W2736703388 cites W654619586 @default.
- W2736703388 doi "https://doi.org/10.48550/arxiv.1707.07294" @default.
- W2736703388 hasPublicationYear "2017" @default.
- W2736703388 type Work @default.
- W2736703388 sameAs 2736703388 @default.
- W2736703388 citedByCount "0" @default.
- W2736703388 crossrefType "posted-content" @default.