Matches in SemOpenAlex for { <https://semopenalex.org/work/W2736707504> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2736707504 abstract "Feature selection for regression problems can be highly beneficial in terms of robustness and execution speed. The Correlation-based Feature Selection (CFS) algorithm, in the attempt to find the best feature subset, evaluates different subsets and selects the one with the highest “goodness”. Such goodness is based on the co-relation between the addition of all features in the subset with the output variable. However, such a simple addition assumes that all features have the same weight in the output variable. This, in turn, assumes that all features are uncorrelated with each other. By considering an optimal weighting instead, a more robust measurement of the goodness can be obtained; however, such weighting is computationally expensive. In this paper, a feature selection algorithm named “R-fast” which considers the β coefficients in the standardized linear regression model as optimal weights is proposed. We also present a technique to quickly estimate approximations to the β coefficients. Our algorithm was evaluated using Multiple Regression Analysis (MRA) over 8 synthetic and 10 real-world datasets. Results show that, when selecting features with our proposed algorithm, MRA's performance is better than or equal to those obtained when selecting features with others well-known filter algorithms and when no selection is performed." @default.
- W2736707504 created "2017-07-31" @default.
- W2736707504 creator A5032499810 @default.
- W2736707504 creator A5046240607 @default.
- W2736707504 date "2017-05-01" @default.
- W2736707504 modified "2023-09-24" @default.
- W2736707504 title "Fast and robust selection of highly-correlated features in regression problems" @default.
- W2736707504 cites W2119862467 @default.
- W2736707504 cites W2120199131 @default.
- W2736707504 cites W2133990480 @default.
- W2736707504 cites W2135046866 @default.
- W2736707504 doi "https://doi.org/10.23919/mva.2017.7986905" @default.
- W2736707504 hasPublicationYear "2017" @default.
- W2736707504 type Work @default.
- W2736707504 sameAs 2736707504 @default.
- W2736707504 citedByCount "3" @default.
- W2736707504 countsByYear W27367075042018 @default.
- W2736707504 countsByYear W27367075042020 @default.
- W2736707504 crossrefType "proceedings-article" @default.
- W2736707504 hasAuthorship W2736707504A5032499810 @default.
- W2736707504 hasAuthorship W2736707504A5046240607 @default.
- W2736707504 hasConcept C104317684 @default.
- W2736707504 hasConcept C105795698 @default.
- W2736707504 hasConcept C11413529 @default.
- W2736707504 hasConcept C119857082 @default.
- W2736707504 hasConcept C126838900 @default.
- W2736707504 hasConcept C132480984 @default.
- W2736707504 hasConcept C138885662 @default.
- W2736707504 hasConcept C148483581 @default.
- W2736707504 hasConcept C152877465 @default.
- W2736707504 hasConcept C153180895 @default.
- W2736707504 hasConcept C154945302 @default.
- W2736707504 hasConcept C183115368 @default.
- W2736707504 hasConcept C185592680 @default.
- W2736707504 hasConcept C2776401178 @default.
- W2736707504 hasConcept C33923547 @default.
- W2736707504 hasConcept C41008148 @default.
- W2736707504 hasConcept C41895202 @default.
- W2736707504 hasConcept C48921125 @default.
- W2736707504 hasConcept C55493867 @default.
- W2736707504 hasConcept C63479239 @default.
- W2736707504 hasConcept C70259352 @default.
- W2736707504 hasConcept C71924100 @default.
- W2736707504 hasConcept C83546350 @default.
- W2736707504 hasConceptScore W2736707504C104317684 @default.
- W2736707504 hasConceptScore W2736707504C105795698 @default.
- W2736707504 hasConceptScore W2736707504C11413529 @default.
- W2736707504 hasConceptScore W2736707504C119857082 @default.
- W2736707504 hasConceptScore W2736707504C126838900 @default.
- W2736707504 hasConceptScore W2736707504C132480984 @default.
- W2736707504 hasConceptScore W2736707504C138885662 @default.
- W2736707504 hasConceptScore W2736707504C148483581 @default.
- W2736707504 hasConceptScore W2736707504C152877465 @default.
- W2736707504 hasConceptScore W2736707504C153180895 @default.
- W2736707504 hasConceptScore W2736707504C154945302 @default.
- W2736707504 hasConceptScore W2736707504C183115368 @default.
- W2736707504 hasConceptScore W2736707504C185592680 @default.
- W2736707504 hasConceptScore W2736707504C2776401178 @default.
- W2736707504 hasConceptScore W2736707504C33923547 @default.
- W2736707504 hasConceptScore W2736707504C41008148 @default.
- W2736707504 hasConceptScore W2736707504C41895202 @default.
- W2736707504 hasConceptScore W2736707504C48921125 @default.
- W2736707504 hasConceptScore W2736707504C55493867 @default.
- W2736707504 hasConceptScore W2736707504C63479239 @default.
- W2736707504 hasConceptScore W2736707504C70259352 @default.
- W2736707504 hasConceptScore W2736707504C71924100 @default.
- W2736707504 hasConceptScore W2736707504C83546350 @default.
- W2736707504 hasLocation W27367075041 @default.
- W2736707504 hasOpenAccess W2736707504 @default.
- W2736707504 hasPrimaryLocation W27367075041 @default.
- W2736707504 hasRelatedWork W2018697919 @default.
- W2736707504 hasRelatedWork W2074716121 @default.
- W2736707504 hasRelatedWork W2093292602 @default.
- W2736707504 hasRelatedWork W2325374573 @default.
- W2736707504 hasRelatedWork W2508231025 @default.
- W2736707504 hasRelatedWork W2592719471 @default.
- W2736707504 hasRelatedWork W2774407768 @default.
- W2736707504 hasRelatedWork W2801807510 @default.
- W2736707504 hasRelatedWork W4226142766 @default.
- W2736707504 hasRelatedWork W4249094282 @default.
- W2736707504 isParatext "false" @default.
- W2736707504 isRetracted "false" @default.
- W2736707504 magId "2736707504" @default.
- W2736707504 workType "article" @default.