Matches in SemOpenAlex for { <https://semopenalex.org/work/W2736730521> ?p ?o ?g. }
- W2736730521 endingPage "110" @default.
- W2736730521 startingPage "91" @default.
- W2736730521 abstract "A large and growing corpus of synchronized kinematic and video recordings of robot-assisted surgery has the potential to facilitate training and subtask automation. One of the challenges in segmenting such multi-modal trajectories is that demonstrations vary spatially, temporally, and contain random noise and loops (repetition until achieving the desired result). Segments of task trajectories are often less complex, less variable, and allow for easier detection of outliers. As manual segmentation can be tedious and error-prone, we propose a new segmentation method that combines hybrid dynamical systems theory and Bayesian non-parametric statistics to automatically segment demonstrations. Transition State Clustering (TSC) models demonstrations as noisy realizations of a switched linear dynamical system, and learns spatially and temporally consistent transition events across demonstrations. TSC uses a hierarchical Dirichlet Process Gaussian Mixture Model to avoid having to select the number of segments a priori. After a series of merging and pruning steps, the algorithm adaptively optimizes the number of segments. In a synthetic case study with two linear dynamical regimes, where demonstrations are corrupted with noise and temporal variations, TSC finds up to a 20% more accurate segmentation than GMM-based alternatives. On 67 recordings of surgical needle passing and suturing tasks from the JIGSAWS surgical training dataset [7], supplemented with manually annotated visual features, TSC finds 83% of needle passing segments and 73% of the suturing segments found by human experts. Qualitatively, TSC also identifies transitions overlooked by human annotators." @default.
- W2736730521 created "2017-07-31" @default.
- W2736730521 creator A5018480426 @default.
- W2736730521 creator A5041383246 @default.
- W2736730521 creator A5049349154 @default.
- W2736730521 creator A5050342525 @default.
- W2736730521 creator A5061193324 @default.
- W2736730521 creator A5071959206 @default.
- W2736730521 creator A5088537496 @default.
- W2736730521 date "2017-07-25" @default.
- W2736730521 modified "2023-10-14" @default.
- W2736730521 title "Transition State Clustering: Unsupervised Surgical Trajectory Segmentation for Robot Learning" @default.
- W2736730521 cites W1482341360 @default.
- W2736730521 cites W1535456295 @default.
- W2736730521 cites W1535734535 @default.
- W2736730521 cites W1584687743 @default.
- W2736730521 cites W1963716360 @default.
- W2736730521 cites W1988707210 @default.
- W2736730521 cites W1989912492 @default.
- W2736730521 cites W1999303932 @default.
- W2736730521 cites W2005870832 @default.
- W2736730521 cites W2013293242 @default.
- W2736730521 cites W2022760091 @default.
- W2736730521 cites W2029294400 @default.
- W2736730521 cites W2036930518 @default.
- W2736730521 cites W2046818102 @default.
- W2736730521 cites W2053324916 @default.
- W2736730521 cites W2054661770 @default.
- W2736730521 cites W2064767749 @default.
- W2736730521 cites W2091797369 @default.
- W2736730521 cites W2099308299 @default.
- W2736730521 cites W2107365982 @default.
- W2736730521 cites W2112634534 @default.
- W2736730521 cites W2115279061 @default.
- W2736730521 cites W2127844098 @default.
- W2736730521 cites W2131908539 @default.
- W2736730521 cites W2154543878 @default.
- W2736730521 cites W2161395589 @default.
- W2736730521 cites W4214823344 @default.
- W2736730521 cites W593558681 @default.
- W2736730521 cites W979233906 @default.
- W2736730521 doi "https://doi.org/10.1007/978-3-319-60916-4_6" @default.
- W2736730521 hasPublicationYear "2017" @default.
- W2736730521 type Work @default.
- W2736730521 sameAs 2736730521 @default.
- W2736730521 citedByCount "48" @default.
- W2736730521 countsByYear W27367305212017 @default.
- W2736730521 countsByYear W27367305212018 @default.
- W2736730521 countsByYear W27367305212019 @default.
- W2736730521 countsByYear W27367305212020 @default.
- W2736730521 countsByYear W27367305212021 @default.
- W2736730521 countsByYear W27367305212022 @default.
- W2736730521 crossrefType "book-chapter" @default.
- W2736730521 hasAuthorship W2736730521A5018480426 @default.
- W2736730521 hasAuthorship W2736730521A5041383246 @default.
- W2736730521 hasAuthorship W2736730521A5049349154 @default.
- W2736730521 hasAuthorship W2736730521A5050342525 @default.
- W2736730521 hasAuthorship W2736730521A5061193324 @default.
- W2736730521 hasAuthorship W2736730521A5071959206 @default.
- W2736730521 hasAuthorship W2736730521A5088537496 @default.
- W2736730521 hasBestOaLocation W27367305212 @default.
- W2736730521 hasConcept C108010975 @default.
- W2736730521 hasConcept C115961682 @default.
- W2736730521 hasConcept C153180895 @default.
- W2736730521 hasConcept C154945302 @default.
- W2736730521 hasConcept C41008148 @default.
- W2736730521 hasConcept C6557445 @default.
- W2736730521 hasConcept C73555534 @default.
- W2736730521 hasConcept C79337645 @default.
- W2736730521 hasConcept C86803240 @default.
- W2736730521 hasConcept C89600930 @default.
- W2736730521 hasConcept C99498987 @default.
- W2736730521 hasConceptScore W2736730521C108010975 @default.
- W2736730521 hasConceptScore W2736730521C115961682 @default.
- W2736730521 hasConceptScore W2736730521C153180895 @default.
- W2736730521 hasConceptScore W2736730521C154945302 @default.
- W2736730521 hasConceptScore W2736730521C41008148 @default.
- W2736730521 hasConceptScore W2736730521C6557445 @default.
- W2736730521 hasConceptScore W2736730521C73555534 @default.
- W2736730521 hasConceptScore W2736730521C79337645 @default.
- W2736730521 hasConceptScore W2736730521C86803240 @default.
- W2736730521 hasConceptScore W2736730521C89600930 @default.
- W2736730521 hasConceptScore W2736730521C99498987 @default.
- W2736730521 hasLocation W27367305211 @default.
- W2736730521 hasLocation W27367305212 @default.
- W2736730521 hasOpenAccess W2736730521 @default.
- W2736730521 hasPrimaryLocation W27367305211 @default.
- W2736730521 hasRelatedWork W1549839916 @default.
- W2736730521 hasRelatedWork W2002417865 @default.
- W2736730521 hasRelatedWork W2326122716 @default.
- W2736730521 hasRelatedWork W2358941527 @default.
- W2736730521 hasRelatedWork W2377965731 @default.
- W2736730521 hasRelatedWork W2394327295 @default.
- W2736730521 hasRelatedWork W2901947522 @default.
- W2736730521 hasRelatedWork W3047144510 @default.
- W2736730521 hasRelatedWork W4213156298 @default.
- W2736730521 hasRelatedWork W4382322875 @default.
- W2736730521 isParatext "false" @default.