Matches in SemOpenAlex for { <https://semopenalex.org/work/W2736766048> ?p ?o ?g. }
- W2736766048 endingPage "429" @default.
- W2736766048 startingPage "421" @default.
- W2736766048 abstract "Material discontinuities and heterogeneities are very common in engineering systems. The thermal response of such systems to heating and cooling is strongly dependent upon the thermal resistance found at the interfaces. Due to difficulties in modeling thermal resistances between different solid objects of a constituent system or assembly, an alternative approach is proposed in this work. In this paper, the dynamic flow of heat through multiple solid objects within a system is predicted by a machine learning model that uses a graph theoretic diffusion kernel. To demonstrate this approach, a randomly packed assembly of cylindrical rods was selected to represent a network of solids where heat transfer rates are largely governed by contacts and/or gaps between the solids. This assembly of cylindrical rods represents a network of solids with unknown interconnecting thermal resistances. Each rod represents a node in the network. The cylindrical rods were assembled in a quartz tube with axis aligned parallel to each other and the tube. The assembly was heated to temperatures up to 1200 K, and then cool-down experiments were conducted. An infra-red (IR) camera and IR transparent ports in the high temperature experimental facility were used to obtain time dependent, high-fidelity thermographic data for training and validation purposes. In particular, the temperature information from an ‘outer’ set of rods, i.e., directly cooled by contact with an external surface, was used for generating training data. This data was then used to train the models for predicting the thermal response of ‘inner’ rods of graphite, quartz and alumina materials. The network of ‘inner’ and ‘outer’ rods touching each other was used to construct a graph. A Support Vector Regression (SVR) model was trained using a diffusion kernel obtained from this graph’s Laplacian matrix. The regression models were used to predict the thermal response in different materials, sizes and networks. When trained with the optimal thermographic data, the RMS error magnitudes from these model predictions were consistently below 3%." @default.
- W2736766048 created "2017-07-31" @default.
- W2736766048 creator A5007535502 @default.
- W2736766048 creator A5018562444 @default.
- W2736766048 creator A5053663591 @default.
- W2736766048 date "2017-12-01" @default.
- W2736766048 modified "2023-09-26" @default.
- W2736766048 title "Thermal response construction in randomly packed solids with graph theoretic support vector regression" @default.
- W2736766048 cites W104184089 @default.
- W2736766048 cites W1774304772 @default.
- W2736766048 cites W1937248759 @default.
- W2736766048 cites W1988846675 @default.
- W2736766048 cites W2014771237 @default.
- W2736766048 cites W2030604633 @default.
- W2736766048 cites W2041268364 @default.
- W2736766048 cites W2045256553 @default.
- W2736766048 cites W2057903137 @default.
- W2736766048 cites W2076953824 @default.
- W2736766048 cites W2091221396 @default.
- W2736766048 cites W2105295920 @default.
- W2736766048 cites W2140747106 @default.
- W2736766048 cites W2144325198 @default.
- W2736766048 cites W2165451993 @default.
- W2736766048 cites W2192638891 @default.
- W2736766048 cites W3143668154 @default.
- W2736766048 cites W4233104424 @default.
- W2736766048 cites W563421864 @default.
- W2736766048 cites W610026615 @default.
- W2736766048 cites W917810873 @default.
- W2736766048 cites W1986691363 @default.
- W2736766048 doi "https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.063" @default.
- W2736766048 hasPublicationYear "2017" @default.
- W2736766048 type Work @default.
- W2736766048 sameAs 2736766048 @default.
- W2736766048 citedByCount "2" @default.
- W2736766048 countsByYear W27367660482022 @default.
- W2736766048 countsByYear W27367660482023 @default.
- W2736766048 crossrefType "journal-article" @default.
- W2736766048 hasAuthorship W2736766048A5007535502 @default.
- W2736766048 hasAuthorship W2736766048A5018562444 @default.
- W2736766048 hasAuthorship W2736766048A5053663591 @default.
- W2736766048 hasBestOaLocation W27367660481 @default.
- W2736766048 hasConcept C121332964 @default.
- W2736766048 hasConcept C127413603 @default.
- W2736766048 hasConcept C134306372 @default.
- W2736766048 hasConcept C137693562 @default.
- W2736766048 hasConcept C142724271 @default.
- W2736766048 hasConcept C15627037 @default.
- W2736766048 hasConcept C159985019 @default.
- W2736766048 hasConcept C162184086 @default.
- W2736766048 hasConcept C186060115 @default.
- W2736766048 hasConcept C186937647 @default.
- W2736766048 hasConcept C18762648 @default.
- W2736766048 hasConcept C192562407 @default.
- W2736766048 hasConcept C204530211 @default.
- W2736766048 hasConcept C204787440 @default.
- W2736766048 hasConcept C24890656 @default.
- W2736766048 hasConcept C33923547 @default.
- W2736766048 hasConcept C41008148 @default.
- W2736766048 hasConcept C50517652 @default.
- W2736766048 hasConcept C57879066 @default.
- W2736766048 hasConcept C62611344 @default.
- W2736766048 hasConcept C71924100 @default.
- W2736766048 hasConcept C78519656 @default.
- W2736766048 hasConcept C86803240 @default.
- W2736766048 hasConcept C97355855 @default.
- W2736766048 hasConceptScore W2736766048C121332964 @default.
- W2736766048 hasConceptScore W2736766048C127413603 @default.
- W2736766048 hasConceptScore W2736766048C134306372 @default.
- W2736766048 hasConceptScore W2736766048C137693562 @default.
- W2736766048 hasConceptScore W2736766048C142724271 @default.
- W2736766048 hasConceptScore W2736766048C15627037 @default.
- W2736766048 hasConceptScore W2736766048C159985019 @default.
- W2736766048 hasConceptScore W2736766048C162184086 @default.
- W2736766048 hasConceptScore W2736766048C186060115 @default.
- W2736766048 hasConceptScore W2736766048C186937647 @default.
- W2736766048 hasConceptScore W2736766048C18762648 @default.
- W2736766048 hasConceptScore W2736766048C192562407 @default.
- W2736766048 hasConceptScore W2736766048C204530211 @default.
- W2736766048 hasConceptScore W2736766048C204787440 @default.
- W2736766048 hasConceptScore W2736766048C24890656 @default.
- W2736766048 hasConceptScore W2736766048C33923547 @default.
- W2736766048 hasConceptScore W2736766048C41008148 @default.
- W2736766048 hasConceptScore W2736766048C50517652 @default.
- W2736766048 hasConceptScore W2736766048C57879066 @default.
- W2736766048 hasConceptScore W2736766048C62611344 @default.
- W2736766048 hasConceptScore W2736766048C71924100 @default.
- W2736766048 hasConceptScore W2736766048C78519656 @default.
- W2736766048 hasConceptScore W2736766048C86803240 @default.
- W2736766048 hasConceptScore W2736766048C97355855 @default.
- W2736766048 hasFunder F4320306084 @default.
- W2736766048 hasLocation W27367660481 @default.
- W2736766048 hasLocation W27367660482 @default.
- W2736766048 hasOpenAccess W2736766048 @default.
- W2736766048 hasPrimaryLocation W27367660481 @default.
- W2736766048 hasRelatedWork W1638461447 @default.
- W2736766048 hasRelatedWork W2057901315 @default.
- W2736766048 hasRelatedWork W2130129992 @default.